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Individual differences in initial sensitivity to ethanol are strongly related to the heri-

table risk of alcoholism in humans. To elucidate key molecular networks that modulate

ethanol sensitivity we performed a systems genetics analysis of ethanol-responsive gene

expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex,

nucleus accumbens, and ventral midbrain) across the B6 × D2 (BXD) recombinant

inbred (RI) panel, a highly diverse family of isogenic mouse strains before and after
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treatment with ethanol.

Acute ethanol altered the expression of ≈2,750 genes in one or more regions and

400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks

were extracted with a powerful graph theoretical method that efficiently summarized

ethanol’s effects. These networks correlated with acute behavioral responses to ethanol

and other drugs of abuse. As predicted, networks were heavily populated by genes

controlling synaptic transmission and neuroplasticity.

Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β ,

are known to influence behavioral or physiological responses to ethanol, validating our

overall approach. Other major hub genes like Grm3 and Nrg3 represent novel targets

of ethanol effects. Networks were under strong genetic control by variants that we

mapped to a small number of chromosomal loci. Using a novel combination of genetic,

bioinformatic and network-based approaches, we identified high priority cis-regulatory

candidate genes, including Scn1b, Gria1, Sncb and Nell2.

The ethanol-responsive gene networks identified here represent a previously unchar-

acterized intermediate phenotype between deoxyribonucleic acid (DNA) variation and

ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly

regulated by ethanol and could contribute to behavioral plasticity seen with chronic

ethanol. Our novel finding that hub genes and a small number of loci exert major

influence over the ethanol response of gene networks could have important implications

for future studies regarding the mechanisms and treatment of alcohol use disorders.
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Chapter 1

Introduction

1.1 Genetics of alcoholism

Alcohol use disorders (AUDs) are extremely prevalent; according to the most recent

National Survey on Drug Use and Health (2011), an estimated 18 million Americans

meet diagnostic criteria for an AUD. However, only a small subset of the wider population

that regularly consumes alcohol will ever meet clinical criteria for alcohol abuse or

alcoholism. While it is well established that AUD susceptibility is strongly influenced

by genetic factors, which account for as much as 40–60% of the risk for developing an

AUD (Heath et al., 1997; Kendler et al., 1994), family history is still the best predictor

of an individual’s risk for developing an AUD.

While population and family-based association studies have discovered a number

of genetic markers linked to AUD susceptibility (Foroud et al., 2000; Hill et al., 2004;

Reich et al., 1998), the highly complex and multifactorial nature of the disorder suggests

that, independently, each of these associations accounts for only a small portion of

the overall genetic variance. Moreover, the molecular mechanisms underlying the

neuroplasticity accounting for AUD likely involves networks comprised of many more

1
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genes than currently identified as affecting behavioral responses to ethanol in animal

models or genetically associated with AUD in humans.

1.2 Traditional approaches to dissecting complex traits

The multiple genetic, environmental, and behavioral factors that play a role in the

development of AUDs make it difficult to identify individual genes linked to these

disorders. Still, as discussed below, some genetic risk factors associated with AUDs have

been identified in genes that code for proteins involved in known biological pathways.

Despite this progress, determining which genes may be the most relevant to developing

therapeutic interventions for alcoholism has proven exceedingly difficult. The major

obstacles being that gene/disease associations reveal very little about the underlying

biology and any implicated gene variant explains only a tiny proportion of an individual’s

overall risk for AUD. Recent work focusing on the study of gene networks is helping to

shed light on the molecular factors affecting complex diseases such as AUD.

1.2.1 Genome-wide association

The forward genetics approach proposed by Botstein et al. (1980) over 30 years ago has

enabled the identification of specific gene variants that drive a variety of rare Mendelian

disorders. However, the success of linkage analysis and positional cloning methods

could not be duplicated when applied to more common diseases characterized by

complex patterns of inheritance and lower levels of penetrance (Hirschhorn et al., 2001).

genome-wide association (GWA) studies were proposed as an alternative approach

to uncover common gene variants that underlie such complex disease (Risch and

Merikangas, 1996). This approach involves identifying correlations between single

nucleotide polymorphisms (SNPs) and a particular trait of interest across a population
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for which genotypic and phenotypic information is available (Hirschhorn and Daly,

2005).

Hundreds of complex diseases and traits have been analyzed using this GWA design,

which have produced many important links between genetic variants and human

diseases (Altshuler et al., 2008). Notable successes include prostrate cancer (Haiman

et al., 2007a,b), Crohn’s disease (Barrett et al., 2008) and type 2 diabetes (Zeggini et al.,

2008). GWA studies have also uncovered variants associated with susceptibility to AUDs

in the Gabrb2, which provides the α2 subunit of γ-aminobutyric acid (GABA) A receptors

(Dick et al., 2006; Edenberg et al., 2004), Npy receptors (Wetherill et al., 2008) and the

classic ethanol metabolizing genes, alcohol dehydrogenase and aldehyde dehydrogenase

(Cook et al., 2005; Kuo et al., 2008; Whitfield, 2002; Whitfield et al., 1998). Overall,

however, the success of this approach has been mixed, and greater progress has been

hindered by insufficient sample sizes, stratified populations, the involvement of rare

gene variants that each contribute only small effects, and heterogenous phenotypic

constructs.

1.2.2 Quantitative trait locus mapping

A similar forward genetics approach commonly used for studying animal models of

complex traits is called quantitative trait locus (QTL) mapping. This approach involves

measuring a particular quantitative trait across a genetically diverse population and

scanning for associations between genotypic and phenotypic variation (Doerge, 2002;

Grisel, 2000). Genomic regions that show a sufficiently strong association with a

phenotype are considered QTL. The simplest, or most hopeful, interpretation of a

mapped QTL is the implicated region harbors a single gene that affects the manifestation

of the associated phenotype. However, it is quite possible that a QTL is actually driven
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by multiple genes, non-coding RNA (ncRNA) species, epigenetic mechanisms, or a

combination thereof.

While QTL mapping studies may be carried out in human populations, the inflated

non-genetic variance contributed by each subject’s unique environment and life expe-

rience introduces a tremendous amount of noise, making results difficult to interpret

(Broman and Sen, 2009). For numerous reasons mice are a highly attractive model

for the purpose of dissecting complex traits. Apart from their small size, relatively low

maintenance costs and short gestation period (Peters et al., 2007), mice also provide an

incredibly deep and ever-expanding arsenal of genetic tools.

As such, QTL mapping studies are typically conducted with animal models, and

primarily inbred strains of mice and their various derivatives. For example, the C57BL6/J

(B6) and DBA2/J (D2) inbred mice are frequently used in alcohol research because

they clearly differ in various responses to ethanol, including development of functional

tolerance (Grieve and Littleton, 1979), locomotor activation (Phillips et al., 1995),

and sensitivity to withdrawal symptoms (Metten and Crabbe, 1994). Because the

environmental conditions in these experiments can be controlled, phenotypic differences

observed between the mouse strains can be largely attributed to genetic differences.

QTL mapping studies then seek to detect the polymorphisms underlying the phenotype

of interest by scanning for alleles that co-vary with the traits.

1.2.3 Recombinant inbred panels of mice

QTL can only be mapped in the presence of genetic variation, therefore QTL studies are

often conducted using derivatives of inbred strains. A typical experimental design might

involve characterizing a panel of second filial (F2) progeny for a phenotype where the

inbred parental strains differ significantly. QTL mapping could then commence after
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genotyping each of the F2 progeny. A special derivative of inbred strains, RI strains, are

produced much the same as an F2 panel but includes an additional phase of multiple

generations of sibling inbreeding (Bailey, 1971). The result is a panel of novel inbred

strains, each carrying a unique combination of the progenitor genomes.

Because these inbred animals are completely isogenic, each generation of progeny is

a genetic clone of its forebears. As such, these genetic lines are essentially immortal, an

incredible boon for scientific reproducibility, because experiments conducted in different

laboratories can be directly compared. For this reason, the popularity of inbred mice

has greatly encouraged inter-lab collaborations and more open data sharing practices.

Furthermore, being inbred, each strain needs to be genotyped only once. In practice, this

has meant that larger laboratories specializing in genotyping, such as the Wellcome Trust

Sanger Institute and the Jackson Laboratory (see http://cgd.jax.org/cgdsnpdb),

have genotyped many inbred strains or RI panels and made the results publicly available.

This exemplifies the power of working with RI panels in QTL mapping studies; all

acquired data is cumulative and directly relatable, regardless of where it originates.

The RI panels most widely used in alcohol research are the BXD and ILS × ISS (LXS)

batteries of RI lines. The BXD lines, derived from the B6 and D2 inbred strains, currently

have over 80 inbred strains (Peirce et al., 2004; Taylor, 1978; Taylor et al., 1999). The

LXS strains were derived from the inbred Long-Sleep (ILS) and inbred Short-Sleep (ISS)

inbred strains that were originally derived by selective breeding for sensitivity to ethanol

sedation (DeFries et al., 1989; Williams et al., 2004). A large collection of behavioral,

anatomical and neurochemical phenotypes derived from the BXD and LXS RI lines is

maintained on GeneNetwork.

The molecular and genetic resources outlined above serve to greatly increase the

power and resolution of QTL mapping for complex trait dissection. However, despite

the wealth of genetic resources and the large number of QTL that have been identified,

http://cgd.jax.org/cgdsnpdb
http://genenetwork.org
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the validation of corresponding QTL has greatly lagged behind (Flint et al., 2005).

This difficulty largely stems from the lack of sufficient recombination events in existing

mouse panels to reduce haplotype blocks, which can span up to several megabases

(Mbs) and are generally much larger than what’s observed in humans (Shifman et al.,

2006). Additionally, small effect sizes complicate detection of a QTL as fine-mapping

efforts proceed. The effect size issue may be due in part to the existence of multiple

quantitative trait genes (QTGs) underlying QTLs detected by initial screens. Strategies

such as derivation of congenic lines have been successful for fine mapping a number

of ethanol traits and for identifying Mpdz as one of the first QTGs mapped for a

mammalian behavioral phenotype (Buck et al., 1999; Fehr et al., 2002; Shirley et al.,

2004). However, such approaches take large investments in time, animals and research

expenditures. In many cases, even with derivation of congenic lines, the support interval

may comprise several Mb and potentially hundreds of positional candidate genes. As

described below, the use of whole-genome expression profiling has provided a powerful

approach for mitigating some of the difficulties presented by traditional genetic QTL

mapping approaches.

1.3 Genomic approaches to dissecting complex traits

Because of the technical obstacles impeding their more effective use, both GWA and

QTL mapping studies to date have identified a deluge of disease-associated genetic

loci but few causal genes. Moreover, even the most successful studies have failed to

place the disease-associated genes in any kind of biological context that would serve to

explain the underlying functional biology. Without elucidating the complex interactions

of the molecular phenotypes that stand between genetic variation and disease, it will be

difficult or impossible to develop new and effective approaches to treating such diseases.
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The emerging field of systems biology is tackling this immense challenge by studying

networks of genes, proteins (Rual et al., 2005), metabolites (Nielsen and Oliver, 2005)

and other molecular phenotypes that represent models of genuine biological pathways.

Studying complex diseases in terms of gene networks rather than individual genes

or genomic loci should aid in dissecting complex diseases by identifying molecular

pathways that are perturbed by genetic variation and ultimately mediate the disease-

associated phenotypes (Schadt, 2009). Furthermore, networks found to mediate relevant

endophenotypes in animals models should be highly generalize to humans, as several

studies have indicated the gene networks are evolutionarily conserved (Miller et al.,

2010; Oldham et al., 2008; Stuart et al., 2003).

1.3.1 Defining disease using high-throughput molecular profiles

Platforms for high-throughput approaches for all these types of molecular profiling have

become increasingly commonplace. Concurrently, methods for analyzing data produced

by these technologies are constantly evolving, yielding results that are simultaneously

more sensitive and more specific. As a result, researchers are better able to appreci-

ate systems-level changes associated with disease. Of these various high-throughput

profiling techniques, microarray-based gene expression platforms have featured most

prominently in biomedical research to date. Through an unbiased profiling of the

transcriptome, microarray expression studies allow researchers to identify patterns of

gene expression associated with a disease.

In some cases, such patterns can better define a complex phenotype by identifying

disease subtypes. For example, microarray analysis of breast cancer tumors identified

gene expression signatures that predict patient prognosis and therefore help physicians

tailor treatment regiments (van ’t Veer et al., 2002). From a basic research perspective,
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microarray expression profiles can help tease apart the complex interactions that under-

lie the development of a disease by implicating a subset of genes whose regulation is

altered with the disease. With this information, it may become feasible to reconstruct

the underlying biological pathways and enhance understanding of disease etiology.

Genomic approaches have been applied directly to alcoholism by studying post-

mortem human brain tissue isolated from alcoholics and matched control subjects using

gene expression microarrays. This has revealed novel information about changes in the

brain’s transcriptome that are associated with chronic ethanol consumption. One of

the findings was a significant deregulation of genes encoding proteins that synthesize

and maintain myelin (Lewohl et al., 2000; Mayfield et al., 2002). However, the nature

of these studies makes it impossible to determine whether such gene expression devi-

ations actually are risk factors that contribute to AUDs or simply represent molecular

consequences of excessive alcohol consumption that are unrelated to the behaviors

constituting alcoholism.

1.3.2 Genomic analyses of AUD models

Animal models can greatly assist in this analysis by allowing for experiments that are

far more informative and, consequently, too invasive to be performed with humans.

Although animal models could never replicate a phenotype as complex as alcoholism,

they can mimic certain facets of the trait (Bennett et al., 2006), which can then be

associated with specific expression signatures using gene expression microarrays. For

example, a genetic predisposition for alcoholism may entail a stronger than average

preference for alcoholic beverages. This particular facet of alcoholism is captured

by rodent models that were selectively bred to maximize a penchant or an aversion

to ethanol, such as the aptly name high-alcohol preference (HAP) and low-alcohol
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preference (LAP) mice (Grahame et al., 1999). In order to identify genes that may

alter the perceived desirability of ethanol, gene expression microarrays were used to

compare the brain transcriptomes of HAP and LAP mice, along with several other

inbred mouse strains that drastically differ in ethanol preference (Mulligan et al., 2006).

This important study identified a diverse array of molecular pathways associated with

differences in ethanol preference. Some of the genes that had the largest effect size

were related to neuronal function and to cellular homeostasis.

Another important facet of a genetic predisposition to alcoholism is a comparatively

blunted sensitivity to the effects of ethanol. As studies have shown that individuals who

are initially less sensitive to acute ethanol are more likely to have a family history of

alcoholism and are at greater risk for developing an AUD (Schuckit, 1984, 1994). As

mentioned earlier, the B6 and D2 inbred mice are frequently used in genetic studies

of ethanol sensitivity. For this reason, Kerns et al. (2005) used microarray expression

studies to dissect the effect of acute ethanol on the brain’s transcriptome using the B6

and D2 inbred mouse strains. The investigators analyzed three brain regions involved in

the mesocorticolimbic reward pathway: prefrontal cortex (PFC), nucleus accumbens

(NAc) and ventral midbrain (VMB). For each region analyzed, the study identified a

specific set of gene modules whose expression was altered in response to acute ethanol

exposure. These gene modules were significantly enriched for genes involved several

retinoic acid signaling, neuropeptide expression and glucocorticoid signaling. Moreover,

similar to the microarray studies of postmortem human alcoholic brains (Lewohl et al.,

2000; Mayfield et al., 2002), several genes involved in myelination were robustly altered

by alcohol exposure, particularly in the PFC (Kerns et al., 2005).

In examining the responses to acute or chronic alcohol exposure in rodent brains,

these and numerous other genomic studies have enhanced the understanding of the

ethanol transcriptome and provided a more comprehensive picture of the genes and
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molecular pathways that contribute to specific facets of AUD than what is possible with

studies of postmortem human brains (Daniels and Buck, 2002; Mulligan et al., 2011;

Rimondini et al., 2002; Saito et al., 2004; Treadwell and Singh, 2004). Moreover, they

have effectively demonstrated how gene expression microarrays can help narrow the

information gap that exists between DNA variation and complex diseases. However, pri-

oritizing the long lists of genes produced by comparative microarray studies conducted

in either species has proven exceedingly difficult. Given the high costs associated with

performing molecular validation experiments, an effective strategy for prioritizing can-

didate genes is crucial. Investigators therefore have used more systems-level approaches

that combine genetic, genomic, and pharmacological methods to better delineate gene

networks related to ethanol behavioral phenotypes.

1.4 Gene network analysis

The previous section mentioned several studies that used gene-expression microarrays to

define lists of genes responding to ethanol or otherwise relevant to AUDs. Although these

studies have provided important biological insights, the question of how such lists can

be used to further advance understanding of a complex disease is not easily answered.

Network-based approaches can greatly improve the interpretability of differential gene-

expression results by providing information about the relationships between genes.

Networks are systems of interconnected components. For example, the World Wide

Web is a global network of computers sharing documents connected by hyperlinks; road

maps are visualizations of city networks connected by highways; social networks are

groups of people connected through friendships; cellular signaling pathways are groups

of proteins connected through molecular interactions (Junker and Schreiber, 2008).

Placing such complex systems within a network framework makes it possible to formally
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analyze the relationships that constitute these systems. Gene networks typically are

visualized as mathematical graphs—that is, a collection of vertices and edges, where

genes are represented by nodes and the lines connecting the nodes indicate that some

relationship exists between the genes.

Many published network analyses of gene groups use information about pre-existing

biological relationships, which may be derived from sources such as literature co-

citation analysis (Rajagopalan and Agarwal, 2005), protein-protein interaction databases

(Rual et al., 2005), or gene ontology (GO) groupings (Ashburner et al., 2000). Some

commercial tools are available for such studies, such as Ingenuity Pathway Analysis

(Ingenuity Systems, Redwood City, CA). Two recent human association studies effectively

demonstrated the potential benefits of incorporating such information, by modifying the

typical GWA strategy and only scanning for associations within groups of functionally

related genes, rather than genome-wide. The first of these studies discovered that

cognitive ability, a complex phenotype with a large genetic component, was significantly

linked to genes encoding heterotrimeric G-proteins (Ruano et al., 2010). The second

study found that genes related to glutamate and GABA signaling collectively contributes

to alcohol dependence (Reimers et al., 2011).

However, although such approaches provide categories for interpreting the genomic

data, they also force such interpretation into the mold of pre-existing information,

potentially limiting the unbiased nature of genomic studies. Genomic data collected

with high-throughput molecular profiling presents the opportunity to derive novel

gene-gene interactions. The maturity of gene expression microarrays relative to similar

technologies designed to measure other molecular phenotypes on a genomic scale has

meant that gene networks are primarily rendered as gene co-expression networks. In the

context of gene co-expression networks, links between nodes typically indicate that the

expression levels for two genes are strongly correlated with one another across whatever
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conditions an experiment entails (e.g. across tissues, time points, treatments, individuals,

etc.). Each link in a gene network essentially represents a testable hypothesis that can

be validated through follow-up molecular experiments. And indeed, co-expression

networks have been used to identify protein interactions that are novel (Scott et al.,

2005) and conserved across species (Stuart et al., 2003).

Various novel and innovative methods exist for generating gene co-expression net-

works. In their simplest form, however, gene co-expression networks can be constructed

by calculating Pearson correlations between all gene pairs and applying a cut-off thresh-

old to determine which genes should be connected. The simplicity of this approach

makes it an appealing choice for conducting a first round of analyses. Section 3.1

provides a more detailed description of gene network construction methods.

A valuable advantage of such network-based approaches is that the relative impor-

tance of specific genes can be assessed in part, by the context of their surrounding

interactions. A variety of calculations can be used to gauge the importance of nodes

to the network as a whole (Dong and Horvath, 2007). The simplest measurement is

determined by the degree of connectivity—that is, the number of other genes the node

is connected to in the network. However, a gene’s “position” in the network also is

an important consideration. For example, a gene that served as the sole connection

between two otherwise independent gene networks would rank fairly low on a priority

scale based on connectivity alone, despite being an important channel of inter-module

communication. A measurement of betweenness centrality (Girvan and Newman, 2002)

can highlight such a gene by determining the frequency with which a node is included in

the shortest paths between all possible node combinations. There is a growing body of

evidence suggesting that hub genes are of particular importance to genetic networks. For

example, introducing null mutations into hub genes negatively impacted the hardiness

of Escherichia coli (E. coli) to a much greater extent than did mutations of randomly
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selected genes (Cooper et al., 2006). This may be explained by an observation made

in Caenorhabditis elegans (C. elegans), showing that hub genes participated in a variety

of canonical signaling pathways (Lehner et al., 2006). In a genetic network study of

mouse liver, hypothalamus and adipose tissue, hub genes were also found to be highly

connected nodes across all three expression datasets (Dobrin et al., 2009).

1.5 Genetic dissections of genomic data

1.5.1 Molecular QTL

Another important early advancement toward a more systems-level approach to identi-

fying disease-associated genes was the application of gene mapping methods to high-

throughput molecular data, making it possible identify causal links between molecular

phenotypes and genomic regions. Like classical physiological or behavioral phenotypes,

genetic factors influencing high-throughput measures of transcript, protein and metabo-

lite abundance can be identified by QTL mapping. The promise of this approach was first

demonstrated by a study of Zea mays (maize) proteins (Damerval et al., 1994), in which

2-dimensional polyacrylamide gels were used to separate 72 proteins and measure

their relative abundance levels across a population of 60 F2 individuals. Looking for

associations between these measurements and a panel of 100 genetic markers, Damer-

val et al. identified QTLs significantly influencing the abundance of over half of the

analyzed proteins. Furthermore, this study effectively demonstrated the potential of this

approach to provide unprecedented insight into structural complexities of quantitative

trait regulation, by determining not only the number of QTL influencing a given trait,

but also characterizing the dominance effects and epistatic interactions between QTL,

and uncovering genetic regulators driving the co-expression between proteins with
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highly similar expression patterns.

Analyzing the genetic regulation of such molecular phenotypes offers a much closer

look at the biological processes that drive the variation in quantitative traits. By

extending these analyses to include high-throughput molecular phenotypes, such as

those generated by gene expression microarrays, it becomes possible to map out entire

molecular networks or signalling pathways that underlie complex traits. The strategy of

performing genetic linkage analysis on genome-wide molecular profiles was formalized

and termed genetical genomics by Jansen and Nap (2001). This proposal primarily

focused on gene-expression microarrays and posited that mapping expression QTLs

(eQTLs) would enable researchers to construct robust gene networks as well as link

these networks to metabolic or other phenotypes. The investigators also suggested that

eQTL mapping could greatly aid in the identification of candidate genes underlying

classical QTLs for disease traits.

The first study to carry out QTL analysis across gene expression microarray profiles

was published using an experimental cross between two strains of Saccharomyces

cerevisiae (Brem et al., 2002). Results from this landmark paper shed a great deal of

light on the genetics basis of gene expression in a complex organism. Of the 6,215

genes measured, 1,528 were differentially expressed between the progenitor strains

and 570 showed significant linkage to at least one locus. Importantly, the authors

noted that the power to detect eQTLs for a gene is a direct function of the number

of loci regulating that gene and the relative contribution made by each locus. By

comparing results derived from empirical computer simulations to their observed data,

they determined the majority of differentially expressed genes were likely regulated by

at least 5 eQTL. Subsequently, several investigations applied the approach to mammalian

systems (Schadt et al., 2003; York et al., 2005), including brain gene expression (Chesler

et al., 2005, 2003).
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1.5.2 cis and trans eQTL

These early genetical genomics studies also characterized the two major classes of eQTLs,

labeled cis and trans eQTLs, which differ with respect to the position of the eQTLs relative

to the gene whose expression is altered. A cis eQTL is located at the same site of the

genome as the gene under study. In contrast, a trans eQTL can be located elsewhere in

the genome, away from the gene whose expression is altered. A prototypical example of

how a trans eQTL could manifest involves TFs: a SNP at the DNA-binding domain of a

TF can affect the TF’s ability to recognize and bind its recognition sites, causing altered

expression of all genes regulated by this TF (Figure 1.1). In other words, the abundance

of all transcripts from those genes would co-vary with the TF SNP. Such a case might

be recognized by a clustering of trans eQTLs at the site of the causal polymorphism,

sometimes referred to as a regulatory hotspot or trans eQTL-band (trans-band). The

identification of trans eQTL clusters can be a powerful approach for identifying key

regulators underlying a complex trait of interest.

The genes comprising trans eQTL clusters often have biological functions that have

been conserved among species, suggesting that these trans-bands may have a biological

relevance. Accordingly, the search for trans eQTLs may allow researchers to identify

biological functions associated with complex traits through defining the gene networks

that comprise a trans-band. For example, Mozhui et al. (2008) have dissected a trans

eQTL cluster on distal mouse Chr 1 and identified a candidate gene that they propose

has a major influence on the expression of linked gene networks and a diverse group

of neurobiological phenotypes with QTLs located in the same region, including several

related to ethanol and other drugs of abuse.
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Figure 1.1. cis versus trans eQTL diagram. The left-most gene (red) codes for a TF
that activates the transcription of genes A (green) and B (blue). A. In the wildtype
scenario all genes are expressed at their full potential, as indicated by the bar graph on
the right. B. A SNP within gene A’s promoter hinders TF binding, causing a reduction
in the rate at which it is expressed, while gene B is unaffected. Thus, variation in
the expression of gene A is associated with a cis eQTL through the actions of a local
cis-acting polymorphism. C. A SNP within the TF gene’s DNA binding region (hexagon),
hinders binding with all downstream promoters, regardless of whether the regulated
gene is located near the TF gene, like gene A, or located elsewhere in the genome, like
gene B. In fact, all genes regulated by this TF would potentially be linked to a trans
eQTL at the site of this TF polymorphism. However, note that gene A’s proximity to the
TF gene would make it difficult accurately classify its eQTL as cis or trans; follow-up
molecular experiments would be necessary to distinguish between the two possibilities.
D. A SNP within the TF gene’s promoter would manifest as a cis eQTL for the TF gene
itself and a trans eQTL for all genes regulated by this TF downstream.
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1.5.3 Integrative strategies for identifying genetic risk factors

The integration of expression eQTL and classical QTL data enables identification of key

markers of disease-causing variants. The effectiveness of this approach was demon-

strated by a genetical genomics analysis of liver expression data from a population of

mice placed on a high-fat diet (Schadt et al., 2003). The purpose of this was diet was to

model an obesity-like phenotype, which was measured using fat-pad mass (FPM). QTL

mapping for FPM revealed a significant QTL on Chr 2 that also harbored over 400 eQTLs.

By scanning this region for cis eQTL-linked genes that were also strongly correlated with

FPM, the researchers were able to identify two novel obesity candidate genes.

Saba et al. (2006) used a similar approach to identify candidate genes for alcohol

preference and acute functional tolerance to alcohol. This large-scale study included

several selectively bred mice to maximize divergence in ethanol phenotypes, including

the HAP and LAP inbred mice, as well a subset of the BXD RI family. Applying microarray

expression profiles using messenger RNA (mRNA) samples obtained from the entire

brain, the investigators identified independent lists of genes whose expression differed

between the HAP and LAP strains and between the BXD strains with high and low

levels of acute functional tolerance. Expression QTL mapping was then conducted for

these differentially expressed genes using the BXD expression and genotypic data. They

identified high-priority candidate genes by screening for differentially expressed genes

with cis eQTL that overlapped previously mapped behavioral QTLs for either alcohol

preference (Belknap and Atkins, 2001) or acute functional tolerance (Kirstein et al.,

2002).

The rationale for prioritizing candidate QTGs on the basis of their having cis eQTLs

located at the same sites as classical QTLs is based on the hypothesis that the variability

of a complex phenotype is linked to a particular locus because the causal gene is being
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produced in variable quantities through a cis-acting polymorphism. There is increasing

evidence that supports the importance of gene-expression variability in regulating

complex traits and interpreting associations between polymorphisms and complex traits

(Emilsson et al., 2008; Kathiresan et al., 2008; Schadt et al., 2008). In fact, Recent

evidence indicates that SNPs associated with a variety of complex traits are more likely

to contain cis eQTLs than would be expected by chance alone (Nicolae et al., 2010).

This indicates that the importance of expression variability in complex trait regulation

is not limited to genetic model systems and that it may be possible for GWA and QTL

mapping studies to improve their track record by incorporating expression data.

1.6 Summary

We have discussed how traditional QTL mapping and GWA studies can benefit from

systems-biological approaches by filling in critical information about the molecular

phenotypes that stand between DNA variation and complex disease. Incorporating data

from high-throughput molecular profiling technologies, like gene expression microarrays,

can better define a disease by identifying groups of genes that respond to or co-vary with

disease-associated traits. Network analysis of disease-associated genes allows us to move

beyond dichotomous gene lists, partially reconstruct the underlying molecular pathways

and prioritize genes based on their importance to the larger network. Applying QTL

mapping to each gene’s expression trait, then makes it possible to identify the genomic

regions that regulate each gene’s expression and uncover the existence of regulatory

hotspots that exert enormous influence over a gene network.

The project described in this thesis utilized the integrative genomic strategies de-

scribed above to better define the mesocorticolimbic reward pathway’s transcriptional

response to acute ethanol. These efforts are a direct extensions of the work published
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by Kerns et al., which provided the initial characterization of acute ethanol’s impact on

gene expression in the PFC, NAc and VMB. Here, we have used microarray expression

data for the same three brain regions obtained for a large subset of the BXD RI panel. In

Chapter 2 this data-set is used to identify the genes whose pattern of expression across

the BXD panel is robustly altered by ethanol exposure. Chapter 3 characterizes a set of

tightly coordinated gene co-expression networks that largely constitute the transcrip-

tional response of the PFC to ethanol and identifies a small number of genetic loci that

represent the key regulators of these networks. Chapter 4 describes the fine-mapping of

a QTL for the anxiolytic-like response to acute ethanol and the use integrative genomic

approaches to identify a single high priority candidate QTG.

1.7 Resources

Much of this project relied upon resources generated by previous members of the Miles

laboratory and other collaborators. Dr. Alex Putman began the genetic analysis of the

anxiolytic-like response to acute ethanol as part of his PhD project (Putman, 2008). The

B6, D2 and BXD RI strains he assayed for this project also provided the brain tissue

samples used to generate the PFC, NAc and VMB microarray expression datasets that

are used throughout this thesis. The actual generation of the microarray expression

data was expertly performed by Paul Vorster and Nathan Bruce. The BXD genotype

data was generated by Williams et al. (2001) and Shifman et al. (2006) and is publicly

accessible from GeneNetwork at http://genenetwork.org/genotypes/BXD.geno.

Sequence data used in the B6/D2 SNP analyses was generated by Dr. Robert Williams

and kindly provided by Dr. Xusheng Wang from his laboratory. This data can now

be queried on GeneNetwork using the SNP browser. Additionally, Dr. Rob Williams

provided the database of BXD phenotypes from GeneNetwork, used in the analysis

http://genenetwork.org
http://genenetwork.org/genotypes/BXD.geno
http://genenetwork.org
http://genenetwork.org/webqtl/main.py?FormID=snpBrowser
http://genenetwork.org


www.manaraa.com

CHAPTER 1. INTRODUCTION 20

described in section 3.6.

The paraclique networks described in Chapter 3 were constructed in collaboration

with Dr. Michael Langston (University of Tennessee), who developed the novel approach,

and his graduate student, Charles Phillips. A web-based implementation of this software

is available at http://grappa.eecs.utk.edu/.

All other analyses presented here were conducted using the open source R environ-

ment for statistical computing (R Development Core Team, 2011) and the genomic data

analysis tools for R developed by the Bioconductor project (Gentleman et al., 2004).

With the exception of network figures, which were rendered in Cytoscape (Shannon et al.,

2003), all visualizations were generated in R using ggplot2 (Wickham, 2009). In most

cases, ColorBrewer palettes were used for qualitative scales (www.colorbrewer.org).

http://grappa.eecs.utk.edu/
http://www.bioconductor.org/
(
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Chapter 2

Neurogenomic response to acute ethanol

2.1 Microarray technology

Much of this thesis is devoted to the analysis of microarray gene expression data. These

analyses took a variety of forms and included assessing microarray quality, generating

expression summaries, integrating array data from disparate platforms, performing

expression QTL mapping and extracting gene co-expression networks. As such, a brief

review of the technology will greatly improve understanding of subsequent sections.

The term ‘microarray’ generically describes a technology that allows for biochemical

assays to be performed in a massively parallel fashion. The array itself is typically a glass

or plastic substrate stippled with a grid of molecular probes designed to specifically bind

with complementary targets. The targets are often linked to chemiluminescent markers,

making it possible to record successful probe/target hybridization events by scanning

the array and analyzing the digital image using spot finding algorithms. Because the

identity of every probe on the array is known, the fluorescence intensity of each spot can

be used to extract quantitative information about the corresponding molecular target.

Through the application of this microarray basic strategy, researchers have been able

21
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to obtain measurements of DNA, mRNA, splicing events, TF binding, DNA methylation

and other molecular events on scales not previously possible.

2.1.1 cDNA spotted microarrays

Although microarrays can be utilized to perform a variety of high throughput molecular

assays, they are predominantly used in genetic investigations and specifically for the

measurement of gene expression, providing an unbiased snapshot of intracellular mRNA

transcript levels. The first modern DNA microarray study measured the expression

of 45 genes in Arabidopsis thaliana (Schena et al., 1995). This study was conducted

using spotted complementary DNA (cDNA) microarrays, one of the two principle gene

expression microarray technologies. Probes for spotted cDNA microarrays are generated

by polymerase chain reaction (PCR) amplification of cDNA libraries and printed on the

array using automated robotic arms (Lennon and Lehrach, 1991). Although commercial

cDNA libraries are available for producing spotted cDNA microarray probes, individual

investigators may supply their own custom libraries, yielding microarrays completely tai-

lored to address a specific research question. Studies typically utilize cDNA microarrays

to determine the relative expression of genes between experimental conditions. This is

achieved by labeling the samples with different fluorophors, most commonly Cyanine

3 (Cy3), which fluoresces green, or Cyanine 5 (Cy5), which fluoresces red. The two

samples are then mixed and washed over a single microarray, where they competitively

hybridize to the spotted probes. The intensity of each fluorescent signal is measured

using laser-scanning microscopes and then compared, making it possible to determine

whether any measured transcript is up- or down-regulated across experimental con-

ditions (Shalon et al., 1996). While cDNA spotted microarrays broke new ground in

the area of high-throughput gene expresion profiling, most recent work has utilized
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alternative microarray platforms that rely on synthetic oligonucleotides affixed to beads

(Kuhn et al., 2004) or glass slides (Lockhart et al., 1996).

2.1.2 Synthetic oligonucleotide arrays

Shortly after Schena et al. (1995) published their study of A. thaliana gene expression

using cDNA spotted microarrays, Lockhart et al. (1996), from the commercial company

Affymetrix (Santa Clara, CA), proposed an alternative DNA microarray technology for

measuring gene expression using an in situ synthesis approach that essentially ‘grows’

oligonucleotide probes directly on the microarray substrate. This is achieved through a

photolithographic process, which begins with a dense grid of synthetic linkers affixed

to the substrate. These linkers terminate with a 5′-hydroxyl group that is initially

blocked by a photo-senstive cap that is removed upon exposure to light (Pirrung et al.,

1998). Any nucleotides washed over the array will chemically bond to linkers whose

protective caps have been removed. The incorporated nucleotides are also modified

with a photo-sensitive cap, ensuring no further synthesis will occur until a probe has

undergone a subsequent round of light exposure. After repeating these steps for the

remaining bases, every probe will have incorporated a single nucleotide (nt). By using a

sequence of specially perforated masks that selectively expose probes to the light source,

oligonucleotide synthesis can proceed simultaneously for all probes, one nucleotide

at a time, requiring 4 × N cycles to construct probes that are N nucleotides long

(Lipshutz et al., 1999). Since synthetic oligonucleotide probes are, in fact, synthetic,

their construction conveniently bypasses the need for cDNA libraries or to generate

large quantities of purified PCR products, which are inherent to spotted cDNA arrays.

Instead, synthetic oligonucleotide probes are designed in silico using available sequence

data. Oligonucleotide microarrays further differ with cDNA spotted microarrays in that

www.affymetrix.com
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only a single labeled sample is hybridized to each microarray. Relative expression is

therefore determined using a series of spike-in controls, internal standards and through

statistical comparisons with other microarrays.

2.1.3 The Affymetrix GeneChip system

Synthetic oligonucleotide arrays are commercially available from Affymetrix for a variety

of purposes. The GeneChip R© system represents Affymetrix’s line of oligonucleotide

arrays intended for measuring mRNA transcript abundance. This thesis is primarily

concerned with gene expression data generated using the Mouse Genome 430 2.0

(M430v2) GeneChip, which provides expression measurements for > 39, 000 transcripts

across the mouse genome. Each of these transcripts is targeted by at least one set of

oligonucleotide probes that are complementary to a different 25-base region of the

same transcript.1 The use of multiple probes per transcript is a valuable aspect of

the GeneChip system, as collectively they can provide a more reliable measurement

of transcript abundance that is more robust against individual probe aberrations. For

example, if a single probe fell within a region contaminated by a bizarre spatial artifact,

skewing its intensity level, the rest of the probe-set would be unaffected, since probes

within a set are randomly distributed across the array.

In addition to the probes designed to be perfect complements of a particular tran-

script, probe-sets also include a second set of probes that are identical to the perfect

match (PM) probes, with the exception of the 13th nucleotide, which is intentionally

swapped to disrupt the perfect complementarity. The intention of including mismatch

(MM) probes was to provide a measurement of non-specific binding. However, as dis-

cussed below, MM probes capture signal as well as non-specific binding, and occasionally
1In practice, most probes within a probe-set target different regions of a transcript. However, it is not

uncommon to come across probes with overlapping target sequences. In some cases the the overlap is
extensive.

http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924&productName=GeneChip-Mouse-Genome-430-2.0-Array
http://plmimagegallery.bmbolstad.com
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register higher intensity levels than their PM counterparts (Irizarry et al., 2003).

2.2 Gene expression microarray analysis

As mentioned earlier, microarray is an umbrella term that accurately describes a wide

variety of technological platforms. Similarly, microarray analysis could be referring

to an equally diverse set of topics. However, any subsequent mention of microarrays

in this text is referring specifically to the Affymetrix GeneChip system unless stated

otherwise. Even if limited to the discussion of Affymetrix microarrays, the analysis of

gene expression microarray data is an incredibly broad and ever-evolving topic that is

far beyond the scope of this thesis. Fortunately, many excellent reviews of microarray

analysis strategies have been published that provide a much more thorough overview

than could be accomplished here, many were written by leaders in the field, including

Brown and Botstein (1999), Miles (2001), Quackenbush (2001), Churchill (2002) and

Reimers (2010).

2.2.1 Sample preparation

The process of obtaining gene expression data using Affymetrix GeneChips begins

with purified total ribonucleic acid (RNA) samples. The mRNA molecules are reverse

transcribed into cDNA using PCR primers comprising the T7 bacteriophage promoter

and a string of deoxythymidines. The samples are then treated with ribonuclease

(RNase) H to degrade the original RNA and undergo a subsequent round of PCR to

synthesize double-stranded DNA. The double-stranded DNA provides the template for

the last in vitro transcription (IVT) step, during which biotin-conjugated nucleotides

are incorporated into the final complementary RNA (cRNA) product. Samples are

then fragmented to reduce secondary structures as well as overall transcript size to
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more closely match the 25-base probes. The cRNA samples are then hybridized to

a GeneChip and stained with streptavidin-linked phycoerythin. Streptavidin forms a

strong bond with the biotinylated nucleotides, attaching the fluorophore phycoerythin

to the target transcripts. The sample-hybridized GeneChip is then imaged using an

Affymetrix scanner, which quantifies the fluorescence intensity of each pixel and stores

the raw data in a DAT file. Affymetrix software is typically used to process the DAT files

and calculate probe-level intensity values, which are exported as CEL files. It is with

these CEL files that most analyses of Affymetrix GeneChip expression data begin.

2.2.2 Probe summarization

Figure 2.1 provides a visualization of probe-level intensity data read directly from CEL

files for three probe-sets targeting high (top), medium (middle) and low (bottom)

abundance transcripts, across 33 samples generated for the BXD PFC project. There is a

considerable amount of variability observed among probes within a probe-set, despite

their targeting the same transcript. This variation is primarily attributed to differences

in probe binding affinities, explaining why the relative measurements generated by

microarrays are inappropriate for making gene comparisons within arrays (Do et al.,

2006).

As is common when working with microarray data, the intensity levels were log2

transformed prior to plotting. Placing microarray data on a log helps reduces skewness

in the distribution, causing it to more closely resemble a normal distribution. This

is clearly demonstrated by Figure 2.2, which provides pairwise scatterplots of raw

microarray data for three biological replicates both before (top) and after (bottom)

log transforming the data. The natural distribution of gene expression levels are not

characterized by a normal curve, which would imply most gene are expressed at the
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Figure 2.1. Probe-level expression for three probe-sets selected to represent high-,
medium- and low-abundance transcripts, respectively. Each line represents a different
microarray sample from the BXD PFC dataset. This plot was generated using custom
ggAffy_ProbePlot function (Source code available in appendix A.2).
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same level, with relatively few extreme outliers (Hardin and Wilson, 2009). In fact, a

power law may better describe the distribution raw microarray gene expression data

(Purdom and Holmes, 2005), which would indicate most genes are expressed at lower

levels but a small number of genes expressed at extremely high levels are expected. Still,

forcing gene expression data to approximate a normal distribution via log transformation

greatly facilitates interpreting differences in transcript abundance by expressing them

as fold changes (Quackenbush, 2002).

In order to assess the expression of a target transcript as a whole, the individual

probes within a probe-set must be combined. A wide variety of methods for calculating

expression summaries exist. The first method to come into widespread use was devel-

oped by Affymetrix and provided as part of the Microarray Analysis Suite 4.0 (MAS 4.0).

Their summarization strategy involved calculating the Average Difference (AvgDiff) in

PM/MM intensity for all probe pairs in a set. It is through the subtraction of MM signal

that MM probes were intended to fulfill their role and remove background noise. There

were issues with this approach, however, namely the AvgDiff would occasionally yield

negative expression summaries when the intensity of MM probes exceeded their PM

counterparts, a biologically inscrutable outcome. Irizarry et al. (2003) observed that

approximately 1/3 of MM probe intensities were higher in a dataset comprising five

Affymetrix HG-U95 GeneChips. In examining the dataset used to construct Figure 2.2,

I found a slightly lower prevalence of MM > PM probe pairs than what Irizarry et al.

reported, with 23.7%, 23.5% and 24.2% of probes being affected in the B6_1, B6_2 and

B6_3 samples, respectively. Several examples of MM > PM probe-pairs are present in

Figure 2.1, especially in the low abundance transcript visualized in the bottom panel.

Affymetrix addressed this issue when they updated from MAS 4.0 to Microarray

analysis Suite 5.0 (MAS 5.0). With MAS 5.0, negative expression values were avoided

by substituting MM probe data for an ‘ideal mismatch’ value, which is calculated using
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Figure 2.2. Raw intensity versus log2 transformation Pairwise comparisons of B6
PFC biological replicates using raw probe intensity values (top) and log2 transformed
values (bottom). Density plots along the diagonals depict the distribution of intensities
for the sample indicated by the corresponding column label. Intensities are far more
evenly spread across the range following log2 transformation, producing a more normal
distribution of gene expression measurments.
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PM/MM differences for an entire probe-set, in situations where PM < MM (Affymetrix,

2002). Still, one potential disadvantage of MAS 5.0 is that, like MAS 4.0, expression

summaries are calculated for each sample individually, ignoring any information that

may be gained through the integration of data across multiple samples. Fortunately,

other researchers have developed alternative expression summary approaches that do

learn with the addition of multiple samples. These model-based approaches leverage the

variance across samples, making it possible take into account probe binding affinities

(Li and Wong, 2001) and even probe sequence composition (Zhang et al., 2003).

2.2.3 Robust multi-array average (RMA)

The probe expression summarization that is perhaps most commonly used with GeneChip

microarrays is the robust multi-array average (RMA), another model-based approach

(Irizarry et al., 2003). RMA is especially notable for choosing to ignore MM probes.

Irizarry et al. demonstrated that MM probes capture a mixture of non-specific back-

ground noise as well as the transcript signal intended exclusively for the PM probes.

Irizarry et al. provided a concrete example of how simply ignoring MM probes could

benefit down-stream analyses, demonstrating that, when compared to several other

expression summaries that rely upon MM subtraction, only the RMA approach could

statistically differentiate among probe-sets measuring control transcripts spiked-in at

a range of specific concentrations. As such, they argued that any marginal gain in

specificity accomplished by subtracting MM probes is not worth the additional noise

introduced by this transformation.

Given the strong performance of RMA, it was chosen as this project’s primary expres-

sion summary for the purpose of measuring absolute transcript abundance. Although

the RMA algorithm has been extended to account for probe sequence composition
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(Wu et al., 2004), providing marginal improvements in accuracy, particularly for lower

abundance transcripts, we chose to stick with the standard RMA approach because it

enabled more direct comparisons between our expression data and microarray datasets

generated by other laboratories. For example, the majority of BXD expression datasets

published on GeneNetwork were summarized using RMA.

2.2.4 Significance score algorithm

A common goal for employing gene expression microarrays is to identify groups of genes

that are expressed at different levels across experimental conditions. Achieving this

goal typically involves generating microarray data for multiple samples per condition so

that traditional statistical tests can be applied. However, the expense and time required

to generate microarray data means obtaining a sufficient number of replicate samples

is not always practical. This is especially challenging for systems genetics studies,

where resources are often used to assay large numbers of different individuals across a

population, rather than taking multiple measurements of individual samples.

The S-score algorithm makes it possible to measure differential expression in mi-

croarray experiments with few or zero replicate samples (Zhang et al., 2002). Rather

than comparing the summarized probe data generated from an expression summary,

the S-score approach directly compares probe-level intensities and then combines the

relative changes into a single measurement that represents the statistical significance of

a gene’s change in expression.

The idea of making comparisons across groups of single individuals immediately

raises concerns about the reproducibility of any change that is detected. Zhang et al.

addressed this concern using microarray expression data for PFC and ventral tegmental

area (VTA) from several B6 mice and calculating S-scores within and across brain regions.

http://genenetwork.org


www.manaraa.com

CHAPTER 2. NEUROGENOMIC RESPONSE TO ACUTE ETHANOL 32

Figure 2.3. S-score reproducibility using M430v2 GeneChips. Two independent
comparisons of B6 PFC and VMB expression profiles detected by S-scores were highly
reproducible (A), whereas S-scores generated for pairwise comparisons of B6 VMB
showed no correspondence and were randomly distributed around zero (B). A similar
pattern of results was achieved by comparing independent S-score analyses of PFC/NAc
differences (C) and within-region differences (D). Collectively, these analyses replicated
the results published by Zhang et al. (2002) and Kerns et al. (2003).
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If the differentially expressed genes detected by S-scores reflect genuine differences in

brain region transcriptomes they should be reproducible across biological replicates,

whereas differences detected within-regions should be attributable to random error and

inconsistent across biological replicates. Indeed, Zhang et al. (2002) found a significant

correlation between replicate PFC/VTA comparison experiments (r = 0.75), while the

correlation between replicate VTA/VTA comparisons was effectively null (r = 0.17).

This experiment had been carried out using Affymetrix Mu6500 GeneChips: one of

the earliest Affymetrix GeneChip models. To ensure the outcome of this analysis could

be replicated with the updated M430v2 GeneChips used here, which measure more than

6× the number of transcripts targeted by the Mu6500 GeneChip, I repeated the analysis

outlined by Zhang et al. (2002). However, because we collected only 3 replicates for

each progenitor strain, it wasn’t possible to conduct two independent within-region

differential expression analyses. Still, the correlation between the VMB/VMB S-scores

was effectively zero (r = 0.019), despite the fact that sample VMB1 was used in both

comparisons (Figure 2.3 B). Importantly, the correlation between replicate PFC/VMB

comparisons was highly significant (r = 0.82) across all M430v2 probe-sets (Figure 2.3

A). If all probe-sets with |S-scores| ≤ 2 are thrown out, that is, probe-sets whose

differences fall within the margin of random error, the correlation jumps to 0.98, clearly

demonstrating that reproducible changes can be detected using S-scores to compare

single samples.

Kerns et al. (2003) performed a similar validation study, except PFC expression was

compared with NAc, rather than VMB, and they used the updated Affymetrix Mouse

Genome U74 2.0 (U74v2) GeneChips, which measure twice as many transcripts as

Mu6500 microarrays, for a total of 12,488 probe-sets. Similar to what was reported by

Zhang et al. (2002), they found that cross-region S-scores were highly reproducible be-

tween repeat experiments (r = 0.81), while the correlation between S-scores calculated
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within PFC and NAc correlated poorly (r = 0.004). Here too, I repeated this analysis

using M430v2 GeneChip data and was able to reproduce their results (Figure 2.3 C–D).

Kerns et al. (2003) also identified genes differentially expressed between PFC and NAc

using MAS 5.0 so the results could be compared with those obtained using S-scores.

The two methods largely agreed about which genes were significantly different between

brain regions, with the notable exception of an outlier group comprised of probe-sets

with large MAS 5.0 fold-changes but S-scores ≈ 0. Many of these outlier probe-sets had

been deemed ‘absent’ by the MAS 5.0 detection-calls algorithm and thus represented

low quality measurements that were effectively filtered out through the S-score analysis

(Kerns et al., 2003).

Molecular validation of gene expression differences detected using S-scores was

provided by a microarray study seeking to identify common molecular mechanisms

underlying normal neurogenesis associated with dentate gyrus (DG) development and

aberrant neurogenesis that characterizes temporal lobe epilepsy (Elliott et al., 2003).

After identifying 37 genes differentially expressed under both neurogenic conditions,

Elliott et al. performed in situ hybridization using labelled riboprobes to measure

transcript levels for 17 of these genes across frozen coronal brain sections. The in

situ evidence for 12 of these genes confirmed the results from the original S-score

analysis. Further molecular validation was provided in a study published by Kennedy

et al. (2006a), which utilized the same spike-in dataset used by Irizarry et al. (2003)

to validate the RMA approach. Again, the goal is to successfully distinguish between

control probe-sets, which have been spiked-in at known concentrations, and all other

probe-sets. They found that both S-scores and RMA values were able to isolate the

spiked-in probe-sets, although S-scores could do so at lower concentrations than RMA

(Kennedy et al., 2006a). MAS 5.0, on the other hand, had difficulty distinguishing

between control and background probe-sets at any concentration.
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While the S-score algorithm has proved capable of identifying biologically meaningful

changes in gene expression, Zhang et al. noted that a significant change identified by

a large S-score does not necessarily imply a reproducible change. Although S-scores

are calculated using multiple probe-pair comparisons, probes target different transcript

regions1 and thus do not constitute replicate measurements. It is only through the

inclusion of biological replicates that a significant change in gene expression can be

deemed reproducible and not artifactual. Still, the studies in this section have clearly

demonstrated that S-scores provide a highly sensitive measure of differential expression,

capable of detecting both reproducible and biologically meaningful changes, assuming

the microarray expression data under consideration is clean and of high quality. As such,

the S-score algorithm was used as this project’s primary mean of measuring differential

gene expression between saline and ethanol treated samples.

2.3 Microarray data generation

2.3.1 Animals and tissue collection

B6 and D2 strains and BXD RI strains 1–42 were purchased from Jackson Laboratory

(Bar Harbor, ME). The novel BXD strains were derived from the independent advanced

intercross (AI) were acquired from Oak Ridge National Laboratory (Oak Ridge, TN,

USA). All animals were male and between 10–12 weeks of age. Mice were housed 4 per

cage with ad libitum access to standard rodent chow (catalog #7912, Harlan Teklad,

Madison, WI) and water. Following a two week acclimation period mice were injected

intraperitoneal (IP) with saline or 1.8 g/kg of ethanol. This ethanol dose was originally

chosen from pilot experiment data to maximize anxiolytic activity and minimize sedative

responses (decreased locomotor activity) as part of the ethanol-induced anxiolysis study
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presented in Chapter 4. For those experiments, all mice underwent behavioral testing

that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes

in a light-dark chamber. The results of these behavioral genetics experiments are

discussed Chapter 4. Mice were killed by cervical dislocation four hours following IP

injection. Immediately thereafter, brains were extracted and chilled for one minute

in iced phosphate buffer before being microdissected into 8 constituent regions as

described previously (Kerns et al., 2005), including PFC, NAc and VMB, which includes

VTA and substantia nigra. Excised regions were placed in individual tubes, flash-frozen

in liquid nitrogen and stored at −80◦C.

Experimental procedures were approved by Virginia Commonwealth University

Institutional Animal Care and Use Committees in accordance with the National Institutes

of Health.

2.3.2 Microarray data generation

This study incorporated PFC tissue from 27 BXD strains, NAc and VMB tissue from 35

BXD strains, as well as B6 and D2 tissue from all three regions. The complete sample

inventory is provided in Table 2.1. Frozen tissue for a given brain region and strain was

pooled from 4–5 animals and homogenized with AurumTM total RNA fatty and fibrous

tissue extraction kit (BioRad, catalog #732-6830) and a Tekmar homogenizer. RNA

concentration was determined by absorbance at 260 nm, and RNA quality was analyzed

by electrophoresis with an Experion analyzer (BioRad, Hercules, CA) and 260/280

absorbance ratios. All RNA samples had RNA quality indices (RQI) ≥ 8. Total RNA (5µg)

derived from each pool and spike-in poly-A RNA controls were reverse transcribed into

double-stranded cDNA using Affymetrix SuperScript R© one-cycle cDNA kit (Invitrogen,

catalog #A10752030). Biotin-labeled cRNA was synthesized from cDNA using the
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Table 2.1. Microarray sample inventory

Prefrontal cortex Nucleus accumbens Ventral midbrain

Saline Ethanol Saline Ethanol Saline Ethanol

B6 3 3 3 3 3 3
D2 3 3 3 3 3 3

BXD01 1 1 1 1 1 1
BXD02 1 1 1 1 1 1
BXD05 1 1 1 1 1 1
BXD06 1 1 1 1 1 1
BXD08 1 1 1 1 1 1
BXD09 1 1 1 1 1 1
BXD11 1 1 1 1 1 1
BXD12 1 1 1 1 1 1
BXD14 1 1 1 1 1 1
BXD15 1 1 1 1 1 1
BXD16 1 1 1 1 1 1
BXD18 1 1 1 1 1 1
BXD19 1 1 1 1 1 1
BXD20 1 1 1 1 1 1
BXD21 1 1 1 1 1 1
BXD22 1 1 1 1 1 1
BXD23 1 1 1 1 1 1
BXD27 1 1 1 1 1 1
BXD28 1 1 1 1 1 1
BXD31 1 1 1 1 1 1
BXD32 1 1 1 1 1 1
BXD33 1 1 1 1 1 1
BXD34 1 1 1 1 1 1
BXD36 1 1 1 1 1 1
BXD38 1 1 1 1 1 1
BXD39 1 1 1 1 1 1
BXD40 0 0 1 1 1 1
BXD42 1 1 1 1 1 1
BXD43 0 0 1 1 1 1
BXD48 0 0 1 1 1 1
BXD63 0 0 1 1 1 1
BXD66 0 0 1 1 1 1
BXD67 0 0 1 1 1 1
BXD90 0 0 1 1 1 1
BXD98 0 0 1 1 1 1

Number of microarrays processed for each brain region and treatment group.
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GeneChip IVT labeling kit (Affymetrix, part #900449) according to manufacturer’s

instructions, purified using the RNAeasy Mini Kit (Qiagen, Mountain View, CA), and

quantified by absorbance at 260 nm. Labeled cRNA samples were hybridized to M430v2

microarrays (Affymetrix, part #900497) according to the manufacturer’s protocol.

2.3.3 Mitigating batch effects

The number of microarrays involved in this study required that their processing be

divided into smaller groups of manageable sizes. For large-scale experiments such as this

that require samples to be processed in subsets, special attention must be paid to prevent

introducing batch effects: that is, non-biological gene expression variation produced

by the systematic grouping of samples throughout the protocol. Generating microarray

expression data involves many steps, each of which has the potential to introduce

non-biological expression heterogeneity. Supervised randomization techniques at every

stage in the protocol can help ensure that changes in gene expression are produced

by the experimental variables of interest, rather than a byproduct of technical factors.

If unaccounted for, batch effects can majorly impact the results of an experiment. For

example, Lamb et al. performed a large-scale microarray experiment that sought to

systematically characterize the effects of small molecule drugs on the expression of

different human cell lines and reported that hierarchical clustering primarily grouped

samples by cell type and cell culture batch, obscuring the effects of drug treatment

(Lamb et al., 2006).

While a number of methods exist that attempt to correct batch effects (Alter et al.,

2000; Benito et al., 2004; Johnson et al., 2007), it is always preferable to avoid the need

for such corrections in the first place using experimental design strategies that mitigate

batch effects. To that end, we performed a supervised randomization of samples into

http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924&productName=GeneChip-Mouse-Genome-430-2.0-Array
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different batch groups prior to each of the following microarray processing stages: total

RNA extraction, cRNA synthesis and sample hybridization. However, to minimize the

risk of technical variation confounding expression variation driven by ethanol, both a

saline and ethanol-treated mouse from a single strain were always processed together.

2.3.4 Microarray quality assessment

Microarray data quality was assessed by inspecting the distributions of log-transformed

probe intensity values, as well as scanning for outlier chips using a standard battery

of quality measurements, including: average background, scaling factor, percentage

of probe-sets called present and 3′/5′ ratios for Actb and Gapdh. Relevant quality

assessment figures are provided in the appendix.

Bioconductor’s implementation of the MAS 5.0 Detection Calls Algorithm, available

in the affy package (Gentleman et al., 2004) for R, was used to generate absent

present marginal calls across all samples. We excluded any probe-sets called absent in

≥ 95% of samples from all subsequent analyses to improve the ratio of true positives in

downstream statistical filtering (McClintick and Edenberg, 2006). This removed 14,096,

12,970 and 13,312 probe-sets from the PFC, NAc and VMB, respectively. The lists of

‘absent’ probe-sets were largely overlapping, with 11,343 probe-sets filtered out of all

3 regional datasets, suggesting this filtering step largely removes probe-sets targeting

genes unexpressed in brain tissue.

Expression data from the saline and ethanol treatment groups were background

corrected, quantile normalized and summarized using the RMA expression measure

(Irizarry et al., 2003). All datasets generated for this paper can be queried on GeneNet-

work or downloaded in their entirety in a minimum information about a microarray

experiment (MIAME) compliant form from the Gene Expression Omnibus repository

http://genenetwork.org
http://genenetwork.org
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under accession number GSE28515. Microarray probe-sets can be annotated from a

variety of sources. Annotation data for Affymetrix M430v2 probe-sets was obtained

from the GeneNetwork Data Sharing Zone. Here GeneNetwork was chosen because it

was consistently a more complete dataset that was updated with greater frequency.

2.4 Differential expression analysis

The large scale of this study made cost prohibitive the inclusion of biological replicates

for each RI strain across treatment groups. Therefore, assessing the reproducibility of

changes in gene expression within a single strain by conventional methods, such as the

Significance Analysis of Microarrays (SAM) approach (Tusher et al., 2001), was not

possible. We used an alternative approach to identify probe-sets with extreme ethanol

expression changes across a minority of strains or smaller but consistent changes across

a larger portion of the BXD family. The impact of acute ethanol on transcript abundance

was measured using the S-score algorithm (Zhang et al., 2002), which utilizes probe-

level data to determine the statistical significance of transcript level differences between

a pair of Affymetrix microarrays. We utilized the R implementation of the S-score

algorithm (Kennedy et al., 2006b) to compare microarray expression levels within BXD

strains across treatment groups to generate a saline versus ethanol S-score for each

probe-set, where a positive S-score indicates up-regulation with ethanol and vice-versa.

In the case of the B6 and D2 progenitor strains, where biological replicate microarrays

were available for each strain in triplicate, S-scores were generated using the SScore

function’s classlabel argument.

Statistical significance of a given probe-set’s ethanol response across strains was

assessed using the approach proposed by Fisher (1925) for combining p-values from

http://genenetwork.org/share/annotations
http://genenetwork.org
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multiple tests:

S =−2
n
∑

i=1

log(pi) (2.1)

where n is the number of tests and p corresponds to the ith p-value. Each probe-set

S-score for a single strain was considered an independent test. S-scores are normally

distributed with a mean of 0 and a standard deviation (SD) of 1 (Zhang et al., 2002).

For 2-tailed tests, p-values for each probe-set were calculated as twice the probability of

obtaining an S-score at least as large as the absolute value of the observed S-score. This

calculation was rendered in R using the following code:

2 * pnorm(abs(x), lower.tail = FALSE)

where x is the original S-score. Equation 2.1 was used used to combine the S-score

transformed p-values. This process was then repeated for 1,000 random permutations

of the observed S-score expression matrix, so that empirical p-values could be obtained

by comparing observed results to the permutation distribution. Finally, to correct for

multiple testing, q-values were generated from the empirical p-values (Benjamini and

Hochberg, 1995). Probe-sets with q-values ≤ 0.05 were considered to be significantly

ethanol responsive. This analysis has been implemented as a R function, the source

code for which is provide in appendix A.1.

2.4.1 Ethanol responsive genes across BXD panel

Kerns et al. previously reported an initial microarray analysis of PFC, NAc and VMB

brain regions from the B6 and D2 inbred strains and identified 307 genes that changed

significantly with acute ethanol treatment (Kerns et al., 2005). To extend those prior

efforts and observe the genetic correlations that exist among ethanol sensitive genes,

we performed a similar analysis using PFC, NAc, and VMB expression data obtained
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Figure 2.4. Transcriptional response to acute-ethanol within 3 regions of meso-
corticolimbic reward circuit across the BXD family A. Number of genes found to be
significantly ethanol-responsive in the PFC (n=29), NAc (n=37) and VMB (n=37) by
analysis of saline vs ethanol S-scores across BXD, B6 and D2 samples. B. Venn-diagram
depicting which subsets of ethanol-responsive genes are region specific (blue), overlap
across two regions (grey) or common to all three regions (red). All three pairwise
overlap combinations were statistically significant as determined by Fisher’s Exact Test
for count data. Odds ratios from this analysis are depicted in word bubbles.
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from the BXD family, as well as the founding B6 and D2 strains. The greater genetic

diversity provided by the BXD microarray data made it possible to detect gene expression

differences that would otherwise be absent in a study limited to the B6 and D2 strains

due to epistatic suppression.

As described in the Differential expression analysis section, we used the S-score

algorithm for probe-level analysis of each strain’s transcriptional response to ethanol,

followed by Fisher’s combined probability test. This approach favors genes that consis-

tently responded to ethanol across numerous BXD strains, regardless of direction, rather

than genes that exhibited large differences in only a small subset of strains. Analysis of

microarray datasets for PFC, NAc and VMB identified 3,512 probe-sets, corresponding

to 2,743 unique genes, that changed significantly with ethanol in at least one brain

region (Table S1). These results replicated over 40% of the genes previously identified

as ethanol-responsive by Kerns et al. (2005), despite differences in microarray design,

investigators and analysis methods. VMB exhibited the largest transcriptional response

to ethanol, while changes observed in PFC and NAc were of comparable magnitude

(Figure 2.4A). The transcriptional response to ethanol within each brain region included

both unique and shared gene components. Roughly 1/3rd of significantly ethanol-

responsive genes in the PFC and NAc were unique to their respective regions, while

greater than 50% of the VMB ethanol profile was specific to that region (Figure 2.4B).

2.4.2 Ethanol responsive transcriptional profiles

Assaying gene expression across the BXD panel allowed us to analyze how genetic

variation influenced transcriptional responses to ethanol (Figure 2.5). As seen with

other heritable complex traits measured in genetic mapping panels, the transcript-level

response of most ethanol sensitive genes followed a continuous distribution across the



www.manaraa.com

CHAPTER 2. NEUROGENOMIC RESPONSE TO ACUTE ETHANOL 44

  0

 50

100

150

200

250

300

 5 10 15 20 25
Strain count

Pr
ob

e−
se

t c
ou

nt

Down−
regulated
Unchanged
Up−
regulated

BX
D

27

B6D
2

BX
D

1
BX

D
2

BX
D

5

BX
D

6
BX

D
8

BX
D

9

BX
D

11

BX
D

12

BX
D

14

BX
D

15

BX
D

16
BX

D
18

BX
D

19

BX
D

20

BX
D

21
BX

D
22

BX
D

23

BX
D

28

BX
D

31

BX
D

32

BX
D

33
BX

D
34

BX
D

36
BX

D
38

BX
D

39

BX
D

42

Npas4

−2

 0

 2

 4

 6

 8

B6 BX
D

5
BX

D
8

BX
D

9
BX

D
11

BX
D

12

BX
D

16

BX
D

18

BX
D

20

BX
D

21
BX

D
23

BX
D

27

BX
D

31
BX

D
33

BX
D

34

BX
D

39

BX
D

42

D
2

BX
D

1

BX
D

2

BX
D

6

BX
D

14

BX
D

15

BX
D

19

BX
D

22
BX

D
28

BX
D

32

BX
D

36
BX

D
38

Rbbp4

−8
−6
−4
−2
 0
 2
 4
 6
 8

S−
sc

or
e

B6D
2

BX
D

1

BX
D

11

BX
D

14

BX
D

15

BX
D

16

BX
D

19

BX
D

20

BX
D

21

BX
D

22

BX
D

34

BX
D

42

BX
D

2

BX
D

5

BX
D

6

BX
D

8
BX

D
9

BX
D

12

BX
D

18

BX
D

23

BX
D

27

BX
D

28

BX
D

31

BX
D

32

BX
D

33

BX
D

36

BX
D

38
BX

D
39

Gabrb2

−4

−2

 0

 2

 4

 6

BXD strain

Figure 2.5. Frequency of ethanol responsive classes. Strain frequency distributions
of gene transcriptional-response classes based on PFC S-score analysis. S-scores >
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regulation and S-scores between these thresholds were considered unchanged.

BXD and progenitor strains.

There was a subset of genes that were almost uniformly up-regulated by ethanol,

including Npas4, Fos, Hsp8, Egr2, Dusp1 and Jun, all of which are neuronal activity

dependent. Most genes, however, exhibited divergent ethanol responses between

variable subsets of BXD strains, as can be clearly seen by viewing the S-score distributions

of the mostly ethanol responsive genes in the PFC (Figure 2.6), NAc (Figure 2.7) and

VMB (Figure 2.8).
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Figure 2.6. Top ethanol responsive genes in PFC S-score distributions for the 8 genes
with the most robust transcriptional response to acute ethanol in the PFC.
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Figure 2.7. Top ethanol responsive genes in NAc
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Figure 2.8. Top ethanol responsive genes in VMB



www.manaraa.com

CHAPTER 2. NEUROGENOMIC RESPONSE TO ACUTE ETHANOL 48

2.4.3 Ethanol responses across brain regions

While continuous distributions of transcriptional responses to ethanol were observed in

all profiled regions, the transcript-level changes were highly region specific. Calculating

within-gene correlations using S-scores revealed little correspondence between a gene’s

ethanol response across regions. Even when the scope of this analysis was limited to

the 399 genes found to be significantly ethanol responsive in all three brain regions,

cross-region S-score correlations were effectively null for all but a small subset of genes.

Therefore, acute ethanol effects on gene expression are likely mediated through an

interaction between genetic background and brain region specific environmental factors.

However, with sample sizes of 27 in the PFC comparisons and 33 in the NAc/VMB

comparison, our statistical power was only sufficient to detect correlations greater than

0.52 and 0.47, respectively, at a significance level of 0.05. Therefore, we were unable

to detect the presence of weaker correlations that may exist between these regions.

Furthermore, as this analysis was conducted using correlation coefficients, only linear

relationships between genes could be discovered. Therefore, using this approach we

were unable to address whether nonlinear interactions existed across brain regions in

our datasets. Given that nonlinear gene expression relationships have been observed

(Kholodenko et al., 1999), and methods exist for constructing gene networks that

incorporate nonlinear interactions (Zhu et al., 2007), this may be a possibility that

should be addressed in the future.

The small contingent of genes that did exhibit coordinated ethanol responses across

regions are listed in Table 2.2. Among these probe-sets, significant cross-regional

correlations existed between the PFC and NAc; not between PFC & VMB or NAc &

VMB. According to the latest Affymetrix M430v2 annotations, only 3 of the 5 probe-sets

target protein-coding genes; 1427747_a_attargets Lcn2, 1418687_attargets Arc and
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Figure 2.9. Cross-region correlations of ethanol responsive gene expression. In
order to determine the degree to which a gene’s transcriptional response to ethanol
is tissue-specific, we calculated cross-regional S-score correlations for each of the 399
probe-sets that were differentially expressed in the PFC, NAc and VMB. Histograms
on the left display the distribution of Pearson correlation coefficients for these 399
genes. Plotting p-values from this analysis against a uniform distribution indicate there
is effectively no coordinated response to ethanol across regions.
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1416505_attargets Nr4a1. Scatterplots in Figure 2.10 compare PFC S-scores for these

3 probe-sets against their S-scores in the NAc.
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Figure 2.10. Coordinated ethanol responses across PFC and NAc Scatterplots for
the probe-sets from Table 2.2 that target known protein-coding genes. The blue lines
represent fitted linear models, with 95% CIs represented by the grey bands.

Table 2.2. Coordinated ethanol responses across PFC and NAc.

Probe-set Gene r p-value

1427747_a_at Lcn2 0.91 1.14e-11
1427820_at BC021831 0.79 2.94e-07
1418687_at Arc 0.76 1.60e-06
1416505_at Nr4a1 0.75 2.53e-06
1440342_at BB276544 0.74 3.79e-06

List of probe-sets whose PFC S-scores were significantly correlated with their NAc
S-scores, calculated using Pearson’s correlation coefficient (r). No significant
correlations were observed between PFC & VMB or NAc & VMB. Scatterplots for several
of these probe-sets are provided in Figure 2.10.
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2.4.4 Functional analysis of ethanol responsive genes

Functional enrichment analyses were performed using ToppFun, a functional enrichment

application available at toppgene.cchmc.org as part of the ToppGene suite of web

applications (Chen et al., 2009b). Entrez ID’s were submitted and analyzed for over-

representation of genes that belong to a GO category (cellular component, molecular

function and biological process), biological pathway, gene family or, similarly, encode

a particular protein domain. In order to enhance the specificity and informativeness

of these results, we considered only those categories that comprise greater than 3 and

fewer than 300 genes, inclusive. Multiple testing was accounted for using a 1% false

discovery rate (FDR) threshold. Results were curated by excluding categories with gene

lists more than 80% redundant with other, less enriched, categories.

Functional enrichment analysis showed strong homology in the functional categories

regulated by ethanol in all three regions (Table S2). Gene groups related to synaptic

activity and plasticity were among the most significantly over-represented GO biological

functions, with dendritic or synaptic structure as the top GO cellular component (CC)

in each region. The 399 genes that were significantly ethanol-responsive in all three

brain regions were also highly enriched for proteins that localize to the pre- and post-

synaptic membranes and regulate synaptic transmission, including both ionotropic and

metabotropic glutamate receptor categories. However, there were notable regional

differences; for example, the over-representation of GABA and glutamate receptor

signaling pathways was particularly high in VMB.

toppgene.cchmc.org
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2.5 Overlap with other AUD-relevant microarray data

The approach used here to identify ethanol-responsive genes was somewhat unorthodox

for a microarray study. Rather than comparing two treatment groups composed of

multiple biological replicates, our treatment groups comprised relatively large samples

of 29–37 genetically unique strains. Although only single arrays were performed per

strain/treatment, the issue of biological variability was mitigated by pooling tissue

samples from at least 3 biological replicates per strain. Despite these methodological

differences our results largely agreed with more traditional ethanol-relevant microarray

analyses of brain gene expression. For example, our analysis replicated a large contingent

of the genes found to be differentially expressed by acute ethanol in Kerns et al.’s original

study of PFC, NAc and VTA expression across B6 and D2 mice, which did include multiple

replicates of each inbred strain (2005).

Concurrently with the BXD project, the Miles laboratory generated a similar mi-

croarray expression dataset for the LXS RI panel. This dataset included PFC expression

data for two sets of 43 LXS strains, each receiving an IP injection of either saline or

ethanol (2 g/kg). I repeated with the LXS data the analyses outlined above for the BXD

expression data, including generating saline versus ethanol S-scores and repeated the

differential expression analysis described in section 2.4. This identified 1,811 probe-sets,

targeting 1,482 unique genes, that were significantly responsive to acute ethanol across

the profiled LXS strains. The full list of genes is provided in Table S3. The lists of

significantly ethanol responsive genes identified in the PFC of BXD and LXS overlapped

extensively (Figure 2.11).

We also observed significant overlap with genomic studies that have investigated

other aspects of AUDs. At the other end of the AUD spectrum are studies concerned with

the impact of chronic ethanol consumption, particularly as it relates to stress-induced
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Figure 2.11. Overlap with other models of acute ethanol.

consumption. As the stress and anxiety associated with alcohol withdrawal are thought

to be key drivers of ethanol drinking in alcoholics (Koob, 2003). A well characterized

mouse model of this paradigm, referred to as chronic intermittent ethanol exposure

(CIE), uses repeated cycles of ethanol exposure via vapor chambers to induce depen-

dence. Over time, mice that undergo this procedure exhibit an enhanced preference for

ethanol in two-bottle choice experiments (Becker and Lopez, 2004). In collaboration

between Becker and Lopez and the Miles laboratory, a set of BXD strains were subjected

to this protocol and used to generate a novel CIE microarray data resource. As with our

acute ethanol microarray expression data, this resource was made up of two treatment

groups; in this context, mice either belonged to the ethanol vapor treatment group or

the air control group. I used the data from these two groups to generate S-scores and

repeated the same differential expression analysis. Here too, we observed substantial

overlap with our acute ethanol BXD results Figure 2.12.

The study by Mulligan et al. (2006), described in section 1.3.2, used microarray

data from whole brain RNA to perform a meta-analysis across several inbred lines used

as models of high and low ethanol consumption. Nearly a quarter of the BXD ethanol-
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Figure 2.12. Overlap with models of other aspects of AUD.

responsive genes defined here were among the list of genes with basal expression levels

found to significantly co-vary with ethanol preference (Figure 2.12). The extent of

this overlap might have been greater if the meta-analysis had been conducted across

targeted brain regions, rather than whole brain. Regardless, many of the genes whose

basal expression levels segregate with alleles driving divergent preferences for ethanol

were also regulated upon exposure to acute ethanol in our study.

2.6 Discussion

Using an extensive microarray gene expression dataset, comprising PFC, NAc and VMB

transcriptional profiles for a subset of the BXD RI panel (Table 2.1), we have investigated

the genetic consequences of acute ethanol exposure in the mesocorticolimbic pathway.

The BXD mice were derived from the B6 and D2 inbred strains, which exhibit divergent

responses in a number of ethanol-relevant phenotypic assays (Belknap et al., 1993;

Grieve and Littleton, 1979; Metten and Crabbe, 1994; Phillips et al., 1995). Similar to
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what was observed in the microarray study of B6 and D2 mice performed by Kerns et al.

(2005), we identified a robust transcriptional response acute ethanol across all three

assayed brain regions.

While many exhibited region-specific responses, a subset of 399 genes were jointly

regulated by acute ethanol in all three brain regions (Figure 2.4). Functional analysis of

this group indicated an over-representation of genes that regulate synaptic transmission

(p-value = 1.8E-09 (Table S2). This included three potassium voltage-gated channels

and Kcnma1, the α1 subunit of the Ca+-activated BK K+ channel. Kcnma1 directly

regulates acute ethanol sensitivity in C. elegans (Davies et al., 2003) and is a major hub

within one of the ethanol responsive gene networks we identified in Chapter 3. Several

components of the GABA-A receptor were also among this list, including the α2, β2

and β3 subunits. Ethanol is a well known allosteric modulator of GABA A receptors

(Nestoros, 1980) and acute ethanol exposure increases GABA activity in the short term

(Breese et al., 2006), and GABA-A receptors that contain the β3 subunit show a much

stronger sensitivity to lower doses of acute ethanol (Wallner et al., 2003). As mentioned

in section 1.2.1, polymorphisms in the GABA α2 subunit gene, GABA A receptor, subunit

α2 (Gabrb2), are associated with lifetime alcoholism (Edenberg et al., 2004) and may

impact the rewarding effect of alcohol consumption (Pierucci-Lagha et al., 2005).

The data mentioned in section 2.5, concerning the large overlap between expression

patterns derived here for acute ethanol and a published study on basal gene expression

correlating with predisposition to ethanol consumption (Mulligan et al., 2006), does

lend strong support to the argument that the ethanol responsive genes discussed here

are largely related to direct ethanol actions. Together, these overlaps between the

current ethanol responsive datasets and other genomic data, strongly suggest that direct

actions of ethanol were the major factor deriving the ethanol responsive genes identified

in this work.
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This genetic analysis of ethanol-responsive gene expression allowed extension be-

yond dichotomous gene lists, to the spectrum of acute ethanol transcriptional responses

influenced by naturally occurring polymorphisms segregating in the BXD strains. This

approach identified gene groups characterized by a wide range of differential expression

profiles: including genes such as Npas4, which was consistently up-regulated by ethanol,

and Gsk3β , whose response entailed up-regulation, down-regulation and no change,

depending on the subset of strains Figure 2.6. Such a range of expression changes

not only highlights the complex role of genetic background in modifying molecular

responses to acute ethanol exposure, but also suggests these genes play a role in me-

diating behavioral responses to acute ethanol, which manifest in a similarly divergent

manner. In Chapter 3 we extend this work to identify specific behavioral phenotypes

that may be directly linked to some of the genetic responses to acute ethanol described

here.

2.6.1 Limitations

One potential confound in our analysis of ethanol-responsive gene networks regards

the experimental design used for the microarray studies. Since the BXD strains used for

tissue harvesting were also part of a behavioral genetics analysis on ethanol anxiolytic

actions, the animals received mild restraint stress and behavioral testing in addition

to saline or ethanol treatment before harvesting tissues 4 hours after drug treatment

(as described in section 2.3.1). Our analysis using S-scores to compare saline versus

ethanol-treated animals was calculated to at least partially remove the effect of stress

from the derived expression patterns, since both groups were handled identically. Still,

we cannot rule out that an interaction between stress and ethanol, rather than just a

response to acute ethanol, might contribute to some of the transcriptional responses
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Figure 2.13. Impact of polymorphic probe targets on differential expression.

reported here.

2.6.2 B6/D2 polymorphisms overlapping microarray probes

An important consideration when working with microarray data is the potential impact

of polymorphisms on probe/target hybridization. In situations where a probe’s intended

target harbors a polymorphism, disrupting their prefect complementarity, the reported

measurement of transcript will be tainted by altered hybridization kinetics (Gilad et al.,

2005). This is especially important in the context of eQTL studies, which were performed

in Chapter 3, because allele specific hybridization artifacts can manifest as spurious cis

eQTLs, inflating the number of false positives. Doss et al. (2005) found that only 10 out

of 28 putative cis eQTLs mapped using an B6 × D2 F2 intercross could be validated in

molecular follow-up experiments.

Since much of this project relied on microarray expression data from animals that



www.manaraa.com

CHAPTER 2. NEUROGENOMIC RESPONSE TO ACUTE ETHANOL 58

A B

   0

 500

1000

1500

cis  trans
eQTL type

Si
gn

ifi
ca

nt
 e

Q
TL

Increaser
allele

B6
D2

Probe−set SNPs No SNPs

0.0

0.2

0.4

0.6

0.8

1.0

cis  trans cis  trans
eQTL type

Pr
op

or
tio

n 
of

 s
ig

ni
fic

an
t e

Q
TL

Increaser
allele

B6
D2

Figure 2.14. Impact of polymorphic probe targets on eQTL mapping.

harbor both B6 and D2 alleles, I wanted to mitigate the effects of polymorphic probe

targets as much as possible. Using the D2 genome sequence provided by Dr. Rob

Williams, I attempted to identify all probes on the M430v2 GeneChip that may be

affected by the presence of D2 SNPs. Because this analysis requires repeating when

working analyzing data from different genetic samples or using different microarray

platforms, I wrote a set of R functions that attempts to take much of the pain out of this

process, which are provided in appendix A.4.

Using these functions, I identified 14,247 M430v2 probes that overlap at least one

D2 SNP. These correspond to 6,439 individual probe-sets, which means ≈ 12% of all

probe-sets are potentially affected. The full list of affected probe-sets is provided in

Table S9. To gain an appreciation of how these polymorphic probe targets could impact

our data, I performed a simple differential expression analysis between B6 and D2 PFC
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samples; 533 probe-sets were significant at a FDR adjusted p-value of 0.05. Figure 2.13A

reveals that a disproportionately high number of these probe-sets were up-regulated

in B6. This bias was almost entirely abrogated upon the removal all SNP-affected

probe-sets (Figure 2.13B). I also examined the impact of these on eQTL mapping results.

Dividing all significant eQTL in the PFC saline data-set into groups based on which

genotype is the increaser allele produced a similar bias. As displayed in Figure 2.14, for

a disproptintely large number of cis eQTL, B6 was the increaser allele. And again, this

bias was almost entirely wiped out by removing SNP-affected probe-sets (Figure 2.14B).

These analyses clearly demonstrate the potentially major impact SNP-affected probes

can have on the results of genomic analyses. As such, we used the list provided in Table

S9 to filter out affected probe-sets from all relevant analyses, especially those relying on

the presence of cis eQTLs to prioritize positional candidate genes.
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Chapter 3

Genetic analysis of ethanol responsive networks

In order to extract and dissect acute ethanol-responsive gene networks, we performed

a large-scale gene expression analysis across RI strains derived from the BXD genetic

mapping panel. The BXD family has been widely used for both genetic studies on

ethanol behaviors and many other phenotypes, and for expression genetics studies

(Chesler et al., 2005). For each included BXD strain, we utilized PFC, VMB and NAc

microarray expression profiles from saline and ethanol treatment groups that were

obtained as part of a previous project conducted in the Miles laboratory (Putman, 2008).

This produced the most robust assessment of ethanol-responsive brain gene expression

to date. Furthermore, we focused on PFC and produced the first genetic analysis of

ethanol-responsive gene networks. Our results show network-level enrichment of genes

involved in synaptic plasticity and identify key hub genes regulating the ethanol response

for large networks of genes. This first such detailed genetic analysis of the acute ethanol

responsome may provide valuable insight for molecular mechanisms underlying the

neurobiology of ethanol and also ultimately provide novel AUD susceptibility candidate

genes and targets for intervention in alcoholism.

60
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3.1 Constructing gene co-expression networks

As we alluded in section 1.4, various methods exist for generating gene co-expression

networks. The simplest method involves calculating Pearson correlations for all pair-wise

genes and applying a hard threshold to determine which genes should be connected. The

robustness of these networks, initially called relevance networks, can be then assessed

through permutation testing (Butte and Kohane, 2000). However, the reliance on hard

thresholds to classify the relationship between genes as either connected or unconnected

is a potential limitation of relevance networks. As the dichotomy imposed by this

approach may artificially limiting and cause biologically meaningful relationships to

be overlooked (Carter et al., 2004). More rigorous approaches for constructing gene

co-expression networks avoid this potential pitfall by utilizing “soft-thresholds.”

3.1.1 WGCNA

One such method is the increasingly popular weighted correlation network analysis

(WGCNA) approach first described by Zhang and Horvath (2005). WGCNA uses soft-

thresholding to generate networks that conform to a scale-free topology. Scale-free

networks follow the power distribution they are named for, comprising many nodes

that have sparse connections and a few that are highly interconnected. In addition

to providing an accurate model for metabolic networks (Jeong et al., 2000), neural

networks of the roundworm C. elegans (Watts and Strogatz, 1998), and the World Wide

Web (Barabasi and Albert, 1999), the scale-free topology also typifies gene co-expression

networks (van Noort et al., 2004). Some researchers recently have used WGCNA to

define correlated gene modules associated with blood alcohol levels using the “drinking-

in-the-dark” paradigm of excessive ethanol consumption in B6 mice (Mulligan et al.,
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2011). WGCNA is implemented as a freely available package for R (Langfelder and

Horvath, 2008).

3.1.2 Paraclique analysis

Paraclique analysis is another example of a rigorous approach to constructing gene

co-expression networks that utilizes soft-thresholding (Baldwin et al., 2005). Unlike

WGCNA, this approach uses a graph theoretical algorithm to identify gene co-expression

networks within a given data-set (Chesler and Langston, 2005). The most natural

grouping of vertices in a graph is by cliques, or fully connected subgraphs. While finding

the maximum clique is a well-known computationally intractable problem, the topology

of biological graphs lends itself to solution by advanced algorithmic implementations

(Abu-Khzam et al., 2006; Langston et al., 2008). The inevitable noise in large microarray

datasets can render cliques too restrictive, as a single missing correlation between two

genes would abrogate the entire clique.

Paracliques are the relaxed version of a clique, which makes allowances for missing

edges within a graph and are therefore well suited for the analysis gene expression

microarray data. For graphs constructed using a correlation threshold, maximum cliques

are iteratively extracted and used as cores on which to build paracliques. A paraclique

starts with a maximum clique and gloms onto all vertices with at least some proportion

of edges to that clique. This proportion is called the proportional glom factor. As a

paraclique is formed, the number of edges that must be present for a vertex to be

included is scaled to the size of the starting clique. Unlike WGCNA, paracliques make

no assumptions about the topology of generated networks.

We utilized the paraclique approach to conduct the network analyses described in

this thesis. An empirical assessment of WGCNA, paraclique analysis and other clustering
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methods found that paraclique-generated gene modules were consistently more enriched

for known biological pathways across small, medium and large gene sets (Eblen et al.,

2011). Still, limited testing of both paracliques and WGCNA with our microarray

expression data-sets produced results that were largely overlapping.

3.2 Gene network analysis in prefrontal cortex

Rather than focusing on gene-lists, as was only possible in the analysis of B6 and D2

strains previously published by our lab (Kerns et al., 2005), we used the power of

genetic correlations across the BXD strains to derive coherent gene networks. Due to

the complexity of this analysis and the importance of the PFC in influencing long-term

adaptive responses to ethanol and goal-directed behavior (Kalivas et al., 2005; Liu et al.,

2006; Robinson and Kolb, 1997), we restricted our network analysis to this brain region.

3.2.1 Paraclique construction

Steady-state RMA and saline versus ethanol S-score expression datasets were analyzed

using the paraclique-finding algorithms described above. We first calculated all pairwise

Pearson correlations across probe-sets, where each probe-set is represented as a vector

of BXD expression values, and used this data to construct an unweighted graph in which

vertices represent probe-sets and edges were present whenever the absolute value of the

correlation between two probe-sets was ≥ 0.7. The choice of threshold when converting

a weighted graph to an unweighted graph is analogous to the choice of p-value when

determining significance; it is chosen to produce a reasonable tradeoff between false

positives and false negatives. A correlation threshold of |0.7| across 27 strains yields a

correlation p-value of 4.8× 10−5 (calculated using Student’s t-distribution). Such low

p-values are indicative of the rigor of graph theoretical techniques.
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We selected a glom factor of 0.7 for the analyses presented here, which maintains an

edge density > 90% in nearly all the resulting paracliques. For such defined paracliques,

probe-sets had expression responses to ethanol correlated with at least 70% of the

other paraclique members at a threshold ≥ |0.7|. Lowering the glom factor below 0.7

resulted in a sharp drop-off in edge density. Furthermore, empiric testing showed that

more stringent glom factors produced similar overall functional results but tended to

fragment known correlated gene groups (e.g. dopamine signaling genes) into multiple

paracliques.

3.2.2 Network topology

The relative importance of each node within a paraclique was assessed using network

topological measures of connectivity and centrality. Degree of connectivity was equal

to number of edges linking a probe-set to other paraclique members, based on the

|0.7| edge correlation threshold used to construct the unweighted graphs. Betweenness

centrality measures how frequently a node is included in the shortest paths between

all pair-wise members of a network. With the edge threshold at |0.7|, Spearman’s rank

correlations were typically > 0.9 between centrality and connectivity. Increasing the

edge correlational threshold to |0.9| reduced the connectivity/centrality correspondence

to ≈ 0.6 and greatly increased the centrality for a subset of nodes situated between

densely inter-connected subnetworks. We therefore used betweenness centrality scores

within unweighted graphs constructed using the more stringent |0.9| edge threshold as

a supplemental measure of node importance. Both measures were calculated using the

igraph package for R (Csardi and Nepusz, 2006).

Fisher’s exact test was used to identify paracliques that harbored a greater number

of significantly ethanol-responsive probe-sets than what would be expected by chance.
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Figure 3.1. PFC saline versus ethanol S-score paraclique networks. Distribution of
S-score network sizes based on the number of genes assigned to each. Significantly
ethanol-responsive genes were over-represented in a subset of these networks (red bars).
These 16 paracliques, shown in the inset, were considered ethanol responsive gene
enriched networks (ErGeNs).

The 30,941 probe-sets that passed the present-call filter (section 2.3.4) served as the

background for this analysis. Paracliques with a Bonferroni adjusted p-value ≤ 0.05

were judged to be significantly enriched for ethanol-responsive probe-sets.

3.2.3 Saline versus ethanol S-score paraclique networks

Using saline versus ethanol S-score data, a total of 61 paraclique networks were identi-

fied in the PFC, while 118 and 93 paracliques were identified in the saline and ethanol

RMA data-sets, respectively. The full lists of probe-sets that constitute each paraclique

network are provided in Table S4. Each paraclique represents a densely intercorrelated

groups of genes. In the saline and ethanol networks formed with RMA expression

datasets, inter-gene correlations represented the admixture of treatment variation super-

imposed on basal steady-state mRNA levels. In the context of the S-score networks, the
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correlations strictly reflect coordinated changes in expression induced by acute ethanol.

The size of the S-score paracliques ranged from 710 to 11 probe-sets (Figure 3.1).

While 64% of all significantly ethanol-responsive genes in the PFC belonged to one of

the 61 S-score networks, a Fisher’s exact test revealed a subset of networks that were

statistically enriched for these genes. These ethanol responsive gene enriched networks

(ErGeNs) are depicted in the inset of Figure 3.1.

Network-based clustering (Figure 3.3) and a traditional non-parametric cluster

analysis (Figure 3.2) of all significantly ethanol responsive genes, both revealed the

existence of several modules of co-expressed genes that were largely subcomponents

of these paraclique-derived ErGeNs, most predominantly ErGeN1 and ErGeN3. Taken

together, these results suggested that, at the time point employed by these studies,

the PFC transcriptional response to acute ethanol was primarily mediated through a

relatively small number of highly organized gene networks.

3.2.4 Cross-treatment network comparisons

To determine how networks generated from the different treatment groups (saline

versus ethanol RMA networks) and analyses (saline/ethanol RMA networks vs S-score

networks) related to each other, we performed pairwise comparisons of all network

members (Table S5).

Many of the saline networks significantly overlapped with networks in the ethanol

data, indicating the inter-gene correlations that constitute these networks are largely

stable across treatments and likely represent robust biological relationships. Similarly,

S-score networks generally had a substantial and predominant relationship with a single

or small number of saline or ethanol networks, as would be expected given that S-scores

were derived from the same data-sets.
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Figure 3.2. Non-parametric cluster analysis of all significantly ethanol-responsive genes
in the PFC. Genes were assigned to modules using k-means clustering. The number
of modules was determined by principal component analysis, which revealed the first
4 components explained ≈70% of the variation in the S-scores for these genes. Each
module was hierarchically clustered independently based on average linkage of Pearson
correlation distance. These results are visualized in the above heatmap, where warmer
colors indicate positive S-scores (up-regulated by ethanol) and cooler colors indicate
negative S-scores (down-regulated by ethanol). The adjacent column of colors indicates
to which S-score paraclique network the corresponding gene was assigned in the PFC.
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Figure 3.3. Network-based clustering of ethanol responsive genes in the PFC.
Network-based clustering of the 1,246 significantly ethanol responsive genes in the PFC
revealed distinct modules largely corresponding to the ErGeNs depicted in Figure 3.1
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We examined in detail how the two major networks comprising the PFC transcrip-

tional response to ethanol, ErGeN1 and ErGeN3, related to their respective counterparts

in the saline and ethanol expression data, in order to determine what additional in-

formation is provided by the S-score networks. ErGeN1 was significantly enriched for

members of saline network 1 and ethanol network 1. Likewise, the gene members of

saline network 1 and ethanol network 1 significantly overlapped each other, with 215

genes in common. The overlapping components of these three networks were frequently

the mostly highly connected nodes (Figure 3.4, ErGeN1 panel). ErGeN3 exhibited a

similar relationship with saline network 4 and ethanol network (Figure 3.4, ErGeN3

panel). Therefore, these S-score networks largely comprise the robustly inter-connected

hubs of existing networks. However, missing from Figure 3.4 are the 439 and 143

probe-sets that belong to ErGeN1 and ErGeN3, respectively, but not their counterpart

networks in the saline or ethanol RMA expression data. These network facets unique to

the ErGeNs represent a form of genetic co-regulation that would have gone undetected

without the use of S-score data.

3.3 Genetic regulation of ethanol-responsive networks

3.3.1 eQTL mapping

To uncover the genetic elements regulating these networks we performed eQTL mapping

for each probe-set’s expression trait in the saline RMA and S-score data-sets. This

analysis was performed using a subset of informative microsatellite and SNP markers

that have been used to genotype the BXD family (Shifman et al., 2006; Williams

et al., 2001), and are available from GeneNetwork at http://genenetwork.org/

genotypes/BXD.geno. Linkage between genotypes and expression phenotypes was

http://genenetwork.org
http://genenetwork.org/genotypes/BXD.geno
http://genenetwork.org/genotypes/BXD.geno
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Figure 3.4. Cross-treatment network connectivity. Relationship between ErGeNs
and counterpart networks in RMA expression data. Both S-score networks, ErGeN1
and ErGeN2, had counterpart networks in the basal saline and post-ethanol expression
data: ErGeN1 significantly overlapped with saline network 1 and ethanol network 1;
ErGeN3 significantly overlapped with saline network 4 and ethanol network 2 (Table
S5). Each point represents a gene that belongs to a given ErGeN’s counterpart saline
network (blue), ethanol network (red) or both (green). Filled-in points indicate the gene
also belongs to the overlapping ErGeN. The x- and y-axes measure gene connectivity
(|Pearson correlation coefficient| ≥ 0.7) within the saline and ethanol expression
datasets, respectively.
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assessed by Haley-Knott regression using R/qtl (Broman et al., 2003; Haley and Knott,

1992).

We corrected for multiple testing and obtained significance thresholds using a per-

mutation analysis approach, where phenotype/genotype associations were recalculated

multiple times using randomly shuffled versions of the observed phenotype data (Doerge

and Churchill, 1996); after each permutation, the maximum logarithm of odds (LOD)

score was recorded. For each probe-set expression trait, this process was repeated 1,000

times. Genome-wide adjusted p-values were then obtained by calculating the percentage

of LOD scores from the randomly permuted data that exceeded a given trait’s observed

LOD score.

We classified the significance of an eQTL using guidelines put forth by the Complex

Trait Consortium for mapping traditional eQTL (Abiola et al., 2003) where ‘significant’

refers to genome-wide corrected p-values ≤ 0.01 and ‘suggestive’ refers to p-values ≤

0.63. Estimates of true QTL location were obtained using R/qtl to calculate 1.5 LOD

score drops, as recommended by Manichaikul et al. (2006). eQTL were considered cis

eQTL if their peak chromosomal location was less than 5 Mb upstream or downstream

of the regulated gene, all others were considered trans eQTL.

3.3.2 Trans-band analysis

Loci enriched for trans eQTL, referred to as trans-bands, were detected by splitting the

genome into 10 Mb bins and counting the number of suggestive eQTL that mapped

to each. In order to determine whether a particular genome bin harbored more eQTL

than would be expected by chance, we performed 10,000 permutations, each involving

random assignment of all eQTL to a genetic marker and recording the number of

mappings at the most populous bin. Observed trans-bands were deemed significant if
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they exceeded the 95th percentile of the distribution of peak trans-bands captured from

each permutation. To facilitate the search for candidate regulators underlying these

eQTL enriched regions, we defined support intervals for each of the major trans-bands

by aggregating the support intervals calculated for the individual eQTL comprising

each trans-bands. Trans-bands support intervals were defined as the chromosomal

regions flanked by genetic markers that were included in at least 80% of the trans-band

member’s individual support intervals. Figure 3.9 provides a visualization of several

ErGeN trans-bands support intervals to clarify this approach.

3.3.3 Saline and S-score eQTL profiles

Performing eQTL mapping across both the saline and S-score data-sets allowed us to

assess how the baseline regulatory architecture of the PFC transcriptome is altered

by exposure to acute ethanol. The genetic regulatory profiles for the RMA and S-

score datasets differed substantially. Although the majority of probe-sets mapped to

at least one suggestive eQTL (Table 3.1), only 6% of eQTL positions were conserved

in both the saline and S-score datasets. Indeed, we observed a fundamental shift in

the type of genetic regulation most prominent across these datasets. Of the 3,279

genes with significant eQTL in the saline expression data, 42% were considered to be

cis-acting, since the peak eQTL location mapped within 5 Mb of the linked expression

trait. Whereas in the S-score data cis eQTL accounted for less than 1% of the 1,215

genes with significant eQTL. The full eQTL mapping results are provided in Table S6.

The effective absence of cis eQTL in the S-score data suggests that mechanisms

underlying ethanol-responsive gene regulation may fundamentally differ from those

governing basal transcription. However, some portion of the basal cis eQTL are likely

spurious associations driven by polymorphisms between the B6 and D2 genomes that
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Table 3.1. Expression QTL mapping results for saline RMA and S-score data sets

eQTL Suggestive eQTL Significant eQTL
Data set class (p-value < 0.63) (p-value < 0.05)

Saline
trans 9,570 1,877
cis 433 1,355

S-scores
trans 10,968 1,276
cis 62 7

Suggestive and significant p-value thresholds are genome-wide corrected.

affect microarray probe target hybridization (Alberts et al., 2007; Doss et al., 2005).

As the impact of such SNP effects should be invariant across the saline versus ethanol

treatment conditions, any spurious cis eQTL would be effectively filtered out of the

S-score eQTL results.
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Figure 3.6. Ethanol responsive network trans-bands Histogram of S-score eQTL
(genome-wide p-value < 0.63) frequencies across the genome divided into 10 Mb bins.
This representation of the eQTL data faciliates the identication of trans-bands. For
example, many members of ErGeN3 are linked to the proximal region of Chr 7, which is
obscured in Figure 3.5.

Similar to other genetical genomics studies, we found that many changes in transcript

abundance induced by acute ethanol were linked to a relatively small number of highly

influential loci, so-called regulatory hotspots or trans-bands. This was particularly salient

for eQTL profiles of the major ErGeNs (Figure 3.5). As shown in Figure 3.6, these

networks could largely be partitioned into 6 trans-bands that mapped to loci on Chrs 4,

7, 11, 13, 15 and 19. In most cases, these trans-bands were unique to specific networks,

the exceptions being the Chr 7 and Chr 11 trans-bands, which were composed of genes

from ErGeN1 & ErGeN3, and ErGeN3 & ErGeN10, respectively (Table 3.2).
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Table 3.2. ErGeN trans-band support intervals

Chr ErGeN ID Peak Mb Peak marker Support interval

4 ErGeN3 46.61 rs13477694 35.49–55.07
7 ErGeN1 34.62 rs3694031 15.52–36.48
7 ErGeN3 30.14 rs8261994 24.06–30.43
11 ErGeN3 58.38 rs3697686 53.89–68.93
11 ErGeN10 58.38 rs3697686 56.35-62.07
13 ErGeN1 54.88 rs13481817 47.68–69.04
15 ErGeN1 89.87 rs13482702 86.80–95.78
19 ErGeN7 41.69 rs3653396 32.73–41.95

3.4 Hub genes within ethanol-responsive networks

The parameters used to construct the networks described above were such that the

vast majority of genes share edges with at least half of the remaining network. Subsets

of genes shared edges with nearly all network members, and were more important

to the network based on measurements of connectivity and centrality. These network

hub genes could be major regulators of the transcriptional response to acute ethanol

and more generally, may represent key points of vulnerability in underlying signaling

pathways responding to ethanol. We therefore identified hub genes by ranking network

members based on their degree of connectivity and betweenness centrality (Table S4).

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13477694
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3694031
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs8261994
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3697686
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3697686
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13481817
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13482702
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3653396
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Figure 3.7. Ethanol responsive gene-enriched network 3 Network visualization of
all genes comprising ErGeN3 that share at least one adjacent edge at a correlation
threshold of > |0.9|. Node color indicates the magnitude of a gene’s transcriptional
response to ethanol, quantified using Fisher’s combined p-values. Grey nodes were
unaltered by ethanol. Node size represents a genes degree of connectivity.
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Among the most highly connected hubs within ErGeN3 were a number of genes

that have been previously implicated in modulating level of response to ethanol or

susceptibility to alcohol dependence (Figure 3.7), including Kcnma1 and Gsk3β . Kcnma1

is a large conductance potassium channel whose activity is directly affected by ethanol

(Dopico et al., 1996). Gsk3β , is a serine/threonine kinase that participates in the WNT

signaling pathway and is an important modulator of ethanol-induced neurotoxicity in

both mice (Chen et al., 2009a) and Drosophila (French and Heberlein, 2009). Our

own recent work has shown that over-expression of Gsk3β in mouse PFC alters ethanol

consumption (Meng et al., manuscript submitted). These findings on Kcnma1 and

Gsk3β serve to validate our network analysis approach, identifying these and other hub

genes (Figure 3.7) as potentially important modulators of ethanol phenotypes.

The ErGeN3 member with the highest degree of connectivity was a probe-set

(1435583_at) unhelpfully annotated as AU067633. However, recent data from high-

throughput RNA sequencing (RNA-seq) analysis of B6 and D2 brain transcripts (Lu

and Williams, personal communication) strongly suggests that this probe-set actually

targets the distal 3′ untranslated region of Grm3, a metabotropic glutamate receptor

(Figure 3.8). Given the considerable evidence that metabotropic glutamate receptors are

key mediators of the neuroadaptations associated with addiction (Gass and Olive, 2008),

Grm3’s position as a major hub of this ethanol-responsive network has mechanistic

implications for regulation of the network and further supports the overall significance

of this network in ethanol traits.
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Figure 3.8. Whole brain RNA-seq expression data across the Chr 5 region that en-
compasses AU067633 and Grm3, adapted from the GeneNetwork mirror of the UCSC
Genome Browser (ucscbrowser.genenetwork.org). Although probe-set 1435583_at
(red) putatively maps to an AU067633 intron, it appears to actually target Grm3’s 3′

UTR, which is highly expressed from the negative strand across the same stretch of DNA.
Probe-set 1435583_at’s basal RMA expression levels were significantly correlated with
the distal Grm3 probe-set, 1430136_at (r = 0.77, p-value = 2.2E-06), while showing
no relationship to the proximal AU067633 probe-set, 14338324_at (r = 0.29, p-value
= 0.14).
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3.5 Candidate regulators of ethanol-responsive networks

3.5.1 Prioritizing positional candidate genes

Candidate regulators for trans-bands were derived by an empiric ranking scheme for

genes located within the support interval of the trans-band. This ranking scheme

assigned points for gene information within four categories: genetic sequence variation

(SNPs), expression genetics (cis eQTL), ethanol regulation and network properties.

Positional candidates were scored based on harboring polymorphisms between the B6

and D2 genomes that may alter protein function. Genes carrying non-synonymous or

functional polymorphisms were considered higher priority candidates. We also took

into account non-coding polymorphisms whose functional impact may only manifest

at the transcript level by further prioritizing interval candidate genes associated with

a robust cis eQTL in either the saline RMA or S-score expression datasets. In order to

prevent false positive cis eQTLs from being prioritized, probe-sets with cis eQTL were

penalized if their binding target region contained a D2 polymorphism identified as

part of the analysis described in section 2.6.2. As Affymetrix probe sequences were

designed against the B6 genome, probe SNPs should only reduce binding avidity with D2

transcripts. Therefore, this penalty was only applied to cis eQTL if B6 was the increaser

allele. Candidates were prioritized further if they belonged to the same network as

constituents of the linked trans-band, taking into account the relative importance of a

gene in the resident network by using the connectivity and centrality measures from

the hub gene analysis. Genes identified as significantly ethanol-responsive across the

BXD lines received additional scoring. The full list of ranked candidate genes for each

trans-band is provided in Table S7.

The two largest ethanol-responsive networks, ErGeN1 and ErGeN3, shared a common
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regulator on the proximal end of Chr 7, between 15.52 and 36.48 Mb (Table 3.2).

Examination of eQTL for all members of these networks revealed a complicated pattern

of association, in which the trans-band could be subdivided into several groups based

on peak eQTL locations that clustered between 16.3 and 35.04 Mb (Figure 3.9). Peak

linkage of genes from ErGeN3, however, was limited to a narrow region between 30.1

and 30.2 Mb, at the distal edge of the support interval. This locus represents the

common regulatory hot-spot shared by these two networks and harbors the two most

highly ranked candidate regulators of the Chr 7 trans-band: Scn1b, a voltage gated

sodium channel subunit and Aplp1, amyloid beta precursor-like protein (Table 3.3).

Both genes were significantly ethanol-responsive, highly connected hub nodes in ErGeN1

and associated with cis eQTL in the saline data. Unlike Aplp1, the ethanol response

of Scn1b was at least partially regulated by a local polymorphism, as evidenced by its

suggestive cis eQTL in the S-score data. Both genes contain coding polymorphisms,

Aplp1’s harbored a polymorphic splice site, raising the possibility that different Aplp1

isoforms may segregate members of the BXD family.

Of the ErGeN1 genes without a trans eQTL on proximal Chr 7, most could be

partitioned into trans-bands linked to Chr 13 or 15. The regulatory hotspots underlying

these trans-bands were both unique to ErGeN1 (Table 3.2). The Chr 13 trans-band

support interval spanned from 47.6 to 69 Mb and peaked at 54.88 Mb. QTL for both

cocaine induced activation (Gill and Boyle, 2003) and hypothalamic CRF binding protein

(Crf-bp) transcript abundance (Garlow et al., 2005) were previously mapped to this

region. Ranking the positional candidates within this region revealed a promising

candidate in synuclein β (Sncb), a neuronal protein that is widely co-localized to

presynaptic terminals throughout the brain (Chandra et al., 2004). Sncb was one of the

largest ErGeN1 hub genes and was regulated by suggestive cis eQTL in both the saline

and S-score datasets.
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Chr 7 position (Mb) Chr 11 position (Mb)
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Figure 3.9. Support intervals for the major eQTL hotspot on Chr 7 for ErGeN1 and
ErGeN3, and the eQTL hotspot on Chr 11 for ErGeN3 and ErGeN10. Each horizontal line
represents an individual probe-set’s 1.5 LOD-drop support interval, ordered and colored
based on peak LOD score. Blue ticks indicate peak eQTL locations. The heatmap along
the x-axis represents the percentage of probe-set support intervals that encompass the
underlying markers. Trans-bands support intervals were defined as the chromosomal
regions harboring at least 80% of the individual probe-set’s eQTL support intervals. Full
results are provided in Table 3.2.
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The regulatory hotspot underlying the Chr 15 trans-band has previously been im-

plicated as a regulator of two ethanol behavioral phenotypes, including an ethanol

preference QTL mapped using congenic lines derived from B6 and BALB/cJ mice

(Vadasz et al., 2000); as well as a QTL underlying loss of righting reflex (LORR) due to

ethanol (Bennett et al., 2002; Markel et al., 1996). The primary candidate regulator of

this trans-band was NEL-like 2 (Nell2) (Protein kinase C binding protein), which showed

the highest regional response to ethanol. Nell2 was an important hub of ErGeN1, as

the network’s fifth most central gene. While Nell2’s baseline transcription was strongly

regulated by a cis eQTL, its ethanol response was modulated by the Chr 13 regulatory

hotspot.

Similar to the Chr 7 trans-band, the regulatory hotspot on Chr 11 was linked to

trans-bands from multiple networks, ErGeN3 and ErGeN10 (Table 3.2). Two strong

candidate genes emerged from this region: Gria1 and Ncor1 (Table 3.3). From a

hypothetical functional perspective, both genes are highly intriguing candidates; Gria1,

as an ionotropic glutamate receptor and Ncor1 as a transcriptional repressor acting

through nuclear receptors and histone deacetylation. In our expression data, both genes

were significantly ethanol-responsive, however, Ncor1’s response was stronger than

Gria1’s. Furthermore, while the baseline expression of Gria1 was primarily regulated

by a highly significant cis eQTL, regulation of Ncor1 was modulated by a suggestive cis

and trans eQTL, the latter of which coincided with the Chr 7 trans-band. Reanalysis of

Ncor1’s expression using a two-locus model revealed a significant interaction between

the Chr 11 and Chr 7 eQTL (data not shown).
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Table 3.4. Functional analysis of major ErGeNs

Functional category Source FDR p-value # of genes

ErGeN1
GTPase activity GO:MF 1.5E-07 26/219
Regulation of synaptic transmission GO:BP 1.85E-07 21/153
Neurotransmitter secretion GO:BP 2.31E-06 14/85
Synapse part GO:CC 3.08E-09 32/270
Dendrite GO:CC 8.56E-09 25/182
Synaptosome GO:CC 7.85E-07 15/91
PTEN pathway MigDB 2.86E-06 7/18

ErGeN3
RING-type zinc fingers HGNC 1.2E-07 16/209
Synapse part GO:BP 1.83E-06 16/270
FHF complex GO:CC 2.84E-05 3/5
Histone deacetylase complex GO:CC 3.56E-04 5/43
Potassium channels HGNC 2.28E-05 6/88
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3.6 Biological relevance of ethanol-responsive networks

3.6.1 Functional analysis of ethanol responsive networks

As was done for total ethanol-responsive gene sets, we investigated GO or pathway

functional over-representation for the S-score networks. The vast majority of networks

were over-represented for at least one gene family, protein domain/interaction, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway or GO category, significant at a

FDR level of 5% (Table S8). ErGeN1 was strikingly enriched for proteins with GTPase

activity (p-value = 1.5E-07), including Rab3a, which mediates ataxic consequences

of ethanol consumption and influences ethanol preference (Kapfhamer et al., 2008).

Both ErGeN1 and ErGeN3 were significantly enriched for genes encoding proteins that

localize to the synapse (Table 3.4). In contrast, S-score networks 2 and 12 had a large

over-representation of genes related to ribosome function and oxidative phosphorylation.

3.6.2 Phenotype correlation analysis

Using the BXD panel of mouse strains also allowed for direct comparison of ethanol

gene expression data with the wide variety of phenotypic traits previously profiled in

the BXD strains. To detect high-level phenotypes regulated by ethanol-responsive gene

networks, we tested associations between ErGeNs and over 2,000 phenotypes available

from GeneNetwork. This analysis was conducted by measuring correlations between

GeneNetwork phenotypes and synthetic traits generated by principal component analysis

(PCA) of ErGeN trans-bands. The first principal component of each trans-band was

used for computational ease and clarity. Performing this analysis at the network and

trans-band level made it possible to detect patterns of phenotypic associations with

improved specificity. As expected, the analysis showed a striking clustering of trans-band
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Figure 3.10. Correlations between ethanol responsive networks and phenotypes
ErGeN trans-bands have distinct phenotypic correlations. Correlations between principal
component traits of ErGeN trans-bands and BXD phenotypes (p-value < 0.01). Edge
thickness indicates strength of network/phenotype association and dashed lines indicate
a negative correlation. Phenotype nodes are labeled with trait IDs that can be queried
on GeneNetwork.

http://genenetwork.org
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for individual ErGeNs and associated phenotypes (Figure 3.10).

The GeneNetwork phenotype database contains a large number of neuroanatomi-

cal morphometric measurements (Martin et al., 2006). Many of these were strongly

associated with ErGeN1 in its entirety (i.e., all trans-bands), including ventral hippocam-

pus volume, overall brain weight, dorsal thalamus volume and amygdala basolateral

complex volume. This network was also highly correlated with the β -max for naloxone

binding (Belknap et al., 1995), a µ-opioid receptor antagonist that is an approved

treatment for alcoholism. Whereas only a subset of ErGeN’s trans-band were correlated

with morphine metabolism rate (Wahlström et al., 1986); the same two trans-bands

also correlated with ethanol acceptance in a two-bottle choice test (Crabbe et al., 1983).

This analysis also revealed ErGeN3 to be important potential mediators of phenotypic

responses to several drugs of abuse. As a whole, ErGeN1 impacts both baseline locomotor

activity (Yang et al., 2008) and habituation (Jones et al., 1999) in novel open field tests,

but the effect of cocaine on these phenotypes was primarily correlated with ErGeN1’s Chr

7 trans-band. Interestingly, non-locomotor based responses to cocaine were associated

exclusively with ErGeN3, including measurements of stereotypic repeated movements

(Jones et al., 1999; Tolliver et al., 1994) and conditioned place preference for the drug

(Phillips et al., unpublished). Given the importance of dopamine levels in activating these

behaviors, particularly stereotypy, we expected to find a strong connection between

ErGeN1’s Chr 7 trans-band and the dopamine binding phenotypes included in the

GeneNetwork database. Instead, we observed that ErGeN7’s solitary trans-band on Chr

19 to be the primary correlate of these measurements, which included Drd1 and Drd2

binding density in the dorsal striatum and NAc (Jones et al., 1999).

Along with ErGeN1, ErGeN3 was related to Naloxone β -max concentration but also

showed strong correlations with morphine induced locomotor activation and naloxone

induced morphine withdrawal (Phillips et al. unpublished). These morphine phenotypes
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were also connected to ErGeN10. This overlap is perhaps not surprising given the strong

association between many genes within ErGeN3 and ErGeN10 (Figure 3.3), as well as

the shared trans-band support interval on Chr 11. However, one distinction between

ErGeN3 and ErGeN10 was the clustered connections of numerous ethanol relevant

phenotypes to ErGeN10. While ErGeN3 correlated with ethanol metabolism rate (Grisel

et al., 2002) and blood glucose levels following ethanol treatment (Risinger, 2003),

ErGeN10 appears more related to ethanol behavioral phenotypes, including ethanol

induced locomotor activation (Crabbe et al., 1983), anxiolysis (Cook et al., unpublished)

and sensitization (Cunningham, 1995).

3.7 Discussion

Here we have presented results from the first genetic analysis of gene networks that con-

stitute transcriptional response of PFC to acute ethanol. Our analysis identified unique

gene networks with implications on ethanol-evoked neuroadaptive mechanisms and

behaviors, and showed that the response of such networks is governed by overlapping

sets of discreet genetic loci. Perhaps most importantly, this analysis highlighted a series

of hub genes as potentially major factors influencing brain responses to ethanol, setting

the stage for future mechanistic studies and possible development of novel therapeutic

approaches to alcoholism.

We leveraged the genetic variance in ethanol expression profiles by deriving dense

paraclique gene networks co-regulated by acute ethanol. These networks likely represent

initial perturbations of key molecular pathways, which, upon repeated consumption

of ethanol, produce downstream neuroadaptations associated with alcohol abuse and

dependence. The functional results of ErGeN1 and ErGeN3 (both of which were highly

populated with robust ethanol-responsive genes) support this assertion, as both networks
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were significantly enriched for proteins involved in neurotransmission and synaptic

plasticity (Table 3.4, section B.8).

The major hub genes of PFC saline versus ethanol S-score networks, and particularly

ErGeN3, included a number of genes previously implicated in drug dependence and

neurological disease. The aforementioned node with the highest betweenness centrality

in ErGeN3 was a probe-set targeting Grm3. It is well established that metabotropic

glutamate receptors play an important functional role in the development of AUD

(Chandler et al., 2006; Gass and Olive, 2008; Vengeliene et al., 2008). Studies have

demonstrated, in particular, that modulation of Grm3 decreases ethanol seeking in rats

(Bäckström and Hyytiä, 2005); although the agonists used in these studies also bind

Grm2. Grm3 is also a high priority candidate gene for schizophrenia, as a group II

mGluR agonist (LY354740) blocked many symptoms induced in the rat phencyclidine

treatment model of schizophrenia (Moghaddam and Adams, 1998). Grm3 has also been

associated with schizophrenia phenotypes in human GWA studies (Egan et al., 2004).

Among the genes adjacent to Grm3 in ErGeN3, the strongest correlation was between

Grm3 and Nrg3 (r = 0.97, p-value < 1e-16). Like Grm3, Nrg3 is a highly connected

gene in ErGeN3 as well as a schizophrenia candidate gene (Kao et al., 2010; Morar

et al., 2011).

The large conductance potassium channel, Kcnma1, is also an ErGeN3 hub gene

(Figure 3.7). In addition to its known functional response to ethanol exposure (Dopico

et al., 1996), Kcnma1 is a very intriguing hub gene because it is a proven regulator of

acute ethanol induced intoxication in C. elegans (Davies et al., 2003). Furthermore,

two recently published human GWA studies have provided preliminary evidence for a

link between Kcnma1 and alcohol dependence (Edenberg et al., 2010; Kendler et al.,

2011). The study by Kendler et al. also identified another voltage gated potassium

channel, Kcnq5, as having an association with alcohol dependence. This is an exciting
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result, as Kcnq5 is directly adjacent to Kcnma1 in ErGeN3, and both genes are highly

ethanol-responsive and major hubs of the network.

In addition to identifying hub genes as leading candidates for future verification

studies, our genetic dissection of ethanol-responsive gene networks also produced clues

regarding the mechanisms underlying ethanol network responses. Identification of chro-

mosomal hot spots linked to ethanol responses for entire gene networks provides genetic

evidence for hubs influencing the response of ErGeN’s and expands our understanding

of brain molecular signaling events responding to ethanol. For example, the sodium

channel Scn1b was a hub gene in ErGeN1, showed robust ethanol-responsiveness, had a

highly significant cis eQTL and also was a strong candidate for regulating a trans-band

of ErGeN3 mapping to exactly the location of Scn1b. Scn1b codes for a regulatory

subunit of sodium channels which are crucial to action potential propagation. Ethanol

has been shown previously to inhibit sodium channel function (Horishita and Harris,

2008). This data suggests that Scn1b and other such potential regulators of ethanol-

responsive trans-bands may be key modulators for extensive portions of the overall

ethanol responsome.
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Chapter 4

Anxiolytic-like response to acute ethanol

4.1 Behavioral responses to acute ethanol

The discovery that responses to acute ethanol are powerful predictors of an individual’s

risk for alcoholism was a major breakthrough in alcohol genetics research. In a landmark

study, Schuckit (1994) found that college students less affected by the intoxicating

effects of acute alcohol, so called low-responders, were significantly more likely to

develop alcohol dependence later in life. Furthermore, students with a family history of

alcoholism qualified as low-responders far more frequently than students with no close

relatives suffering from alcoholism; a clear indication that acute ethanol responses are

largely impacted by genetic factors. This inverse relationship between level of response

to acute ethanol and long-term drinking behaviors has been replicated in mouse models,

making it possible to investigate the underlying mechanisms controlling acute ethanol

sensitivity. For example, given a two-bottle choice, B6 mice will consume more ethanol

than D2 inbred mice, which are largely uninterested in the voluntarily consumption

of ethanol but are much more sensitive to ethanol induced acute locomotor activation

(Metten et al., 1998). Numerous, but not all, studies in various gene targeting models

92
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also show that drinking behavior tends to vary inversely with such acute responses such

as locomotor activation or sedation.

4.1.1 Anxiety as a risk factor for alcoholism

Anxiety has long been considered a risk factor for alcoholism. One early theory, referred

to as the tension reduction hypothesis, postulated that ethanol’s anxiolytic effect would

be more rewarding for anxiety prone individuals and would reinforce the benefits of

drinking, ultimately leading to more frequent consumption (Cappell and Herman, 1972).

While evidence supporting this relationship in humans is lacking, the considerable

comorbidity between alcohol use disorders and anxiety disorders (Kessler et al., 1994),

as well as the observation that alcoholics frequently report anxiety reduction motivates

them to drink (Newlin and Thomson, 1990), strongly suggests that anxiety is indeed an

important contributor to an individual’s risk for developing alcoholism.

The tension reduction hypothesis has found support in studies of rodent anxiety

models, which have demonstrated that highly anxious rats exhibit increased ethanol

preference and consumption (Spanagel et al., 1995) and both rats and mice treated

with ethanol will spend significantly more time in the open arm of an elevated plus-

maze (Boehm et al., 2002; LaBuda and Fuchs, 2000, 2001), which is interpreted as a

reduction in anxiety. Despite the apparent link between anxiety and alcoholism, and

the numerous studies demonstrating ethanol induced anxiolysis can be consistently

measured with rodent models, there is a dearth of studies investigating the genetic

components underlying the anxiolytic response to acute ethanol.
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4.1.2 Initial mapping of Etanq1

Dr. Putman focused his thesis project on investigating the mechanisms underlying

the anxiolytic effects of acute ethanol using the light-dark transition model of anxiety

(Crawley and Goodwin, 1980; Putman, 2008). As nocturnal creatures, rodents are

naturally averse to bright lights. Therefore, in the light-dark model, the light side of the

chamber acts as a stressor and anxiety is measured by analyzing the percent time spent

in the light (PTS) or the percent distance traveled in the light (PDT). An additional

benefit of this model is total locomotor activity (TLA) can also be measured, which is a

phenotype that is also relevant to alcohol research (Boehm et al., 2002; Lessov et al.,

2001).

His work revealed that both B6 and D2 mice traveled significantly further in the

light side of the chamber following ethanol treatment than saline treated controls.

Furthermore, the degree of anxiolysis exhibited by the B6 mice appeared larger than

the D2 mice. Dr. Putman expanded the light-dark box studies across the BXD RI panel,

making it possible to perform gene mapping studies by identifying chromosomal regions

that influenced ethanol response in a genotype specific manner. This ultimately led to

the identification of ethanol-induced anxiolytic-like response QTL 1 (Etanq1), a strong

mediator of ethanol’s impact on anxiety-like phenotypes.

4.2 Extending the Etanq1 project

This project was concerned with extending his work by identifying the causative QTG

underlying Etanq1, which would provide novel insight into the molecular mechanisms

of ethanol-induced anxiolysis. While the ratio of mapped behavioral QTL to successfully

identified QTG has been uninspiring, I believed the project had a higher probability of
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success for several reasons. First, the effect size of Etanq1 is quite large, with the QTL

accounting for over 30% of the variance in ethanol-induced anxiolysis as measured by

PDT. A 2005 review of rodent QTL mapping studies conducted a survey of behavioral

QTLs and found the average effect size for uncloned QTL is 5.8% while the average

effect for the small number of successfully cloned QTL is 26% (Flint et al., 2005), which

highlights the important relationship between QTL effect size and likelihood of success.

Second, the PFC, NAc and VMB microarray expression datasets described in Chapter 2

were derived from the same mice used in the light-dark box (LD box) behavioral assay.

Through the integration of these data it was possible to perform genetic correlations with

transcript variation and prioritize genes within the Etanq1 support interval associated

with ethanol-induced anxiolysis.

4.3 Preliminary studies

4.3.1 Validity of light-dark box model of anxiety

The light-dark transition model of anxiety was selected to investigate the anxiolytic-

like response to acute ethanol. The construct validity of this model was confirmed by

comparing the results of D2 mice that received IP injections of either 0.9% saline or

diazepam (2mg/kg), a benzodiazepine that produces anxiolysis and central nervous

system (CNS) depression through activation of GABAA receptors (Sieghart, 1994). Mice

in the diazepam treatment group traveled significantly further (p-value = 0.0102) and

spent significantly more time (p-value = 0.0176) in the light side of the light-dark box

than the saline controls. Any increase in percent time or percent locomotor activity in

the light is interpreted as a reduction in anxiety.
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4.3.2 Anxiolytic-like response to acute ethanol in B6 and D2

The LD box method provides a valid measurement of pharmacologically induced anxiol-

ysis in mice, as demonstrated by the diazepam experiment above. While other measures

have been used to measure anxiety-like behaviors in rodents, Drs. Putman and Miles

chose the LD box due to the relatively high-throughput nature of the assay and its

reproducibility. Figure 4.1 provides LD box data from initial experiments investigating

the anxiolytic-like effects of acute ethanol in B6 as well as D2 mice. Mice received an IP

injection of 0.9% saline or a sedative dose of ethanol (1.8 g/kg). As with the diazepam

experiment, mice treated with ethanol spent significantly more time in the light and

traveled significantly further in the light. While both strains demonstrated a significant

anxiolytic response to ethanol, the magnitude of the B6 response was stronger across

both anxiety measures. In contrast, only the D2 mice significantly increased their TLA

following ethanol treatment (Figure 4.1, right panel), which is consistent with previous

reports (Phillips et al., 1995) and suggests that PDT and PTS are influenced by different

genetic mechanisms than the drivers of ethanol-induced locomotor activation.

4.3.3 Provisional QTL for ethanol anxiolytic-like response

To identify genetic influences underlying the anxiolytic-like response to ethanol, the

LD box assay was repeated across 27 strains from the BXD RI panel following saline or

ethanol IP injections. Of the 27 assayed strains, 23 exhibited a robust anxiolytic-like

response to acute ethanol (Figure 4.2). As expected, variation in the measured behaviors

followed a continuous distribution, indicating that these phenotypes are complex traits

influenced by multiple polymorphic loci. Interval mapping was carried out for PDT, PTS

and TLA following saline and ethanol treatment using the same set of genotypic data

described in section 3.3.1. These results are summarized in Table 4.1. The anxiolytic-like
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Figure 4.1. B6 and D2 mice anxiolytic-like behaviors. Percent distance traveled in
the light (left) and total locomotor activity (right) following IP injection of saline (blue)
or ethanol (red) across BXD progenitors, B6 and D2 (n = 13–16). Bars represent mean±
SEM. A two-way ANOVA followed by Tukey’s HSD post-hoc analysis showed that ethanol
significantly increased the PDT for B6 (p-value < 0.001) and D2 (p-value < 0.05).
However, only D2 mice exhibited a significant increase in TLA following ethanol.
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Figure 4.2. Variation in the anxiolytic-like response to acute ethanol across B6, D2 and
BXD strains assayed as part of the provisional mapping, confirmation and fine-mapping
of Etanq1.

behaviors, PDT and PTS, were highly correlated in both the saline (r = 0.93, p-value =

3×10−13) and ethanol (r = 0.98, p-value = 2×10−16) treatment groups and consistently

produced overlapping QTL, indicating that these phenotypes are measuring the same

underlying constructs. As PDT produced the more significant QTL, it will be the only

anxiety metric discussed henceforth.

While the majority of strains exhibited a robust increase in locomotor activity

post-ethanol, the primary genetic driver of locomotor variation was the same for both

treatments as evidenced by the significant QTL for TLA on the same distal region of Chr 1

following saline or ethanol (Table 4.1). The anxiety measures also produced QTLs on Chr

1, however their peak locations relative to the locomotor QTL were approximately 20 Mb

proximal following saline and 30 Mb distal following ethanol. Though support intervals

for the anxiety behaviors and TLA overlap, further studies are necessary to determine

whether these phenotypes are being influenced by a common locus. Interestingly, the

peak location of the TLA QTL on Chr 1 coincides with the QTL hotspot we referenced in
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Table 4.1. Provisional QTL mapped for anxiety and locomotor phenotypes

Phenotype Chr Marker Peak (Mb) Support interval (Mb) LOD

Saline PDT 11 rs13481251 116.91 4.408–121.409 3.32
Ethanol PDT 12 rs3716547 68.67 53.911–71.6617 5.16
Saline TLA 11 rs13481117 79.07 4.408–121.409 3.11
Saline TLA 9 mCV23098764 51.52 10.573–124.039 3.37

section 1.5.2, which modulates a large number of phenotypes, including several ethanol

phenotypes, and was recently dissected by Mozhui et al. (2008).

The most striking result from the interval mapping analysis is the linkage of anxiety

behaviors following ethanol to Chr 12 (Figure 4.3). The ethanol-induced anxiolytic-like

response QTL 1 identified for PDT following ethanol treatment reaches a peak LOD

score of 5.16. Using 10,000 permutations to derive an estimate of the genome-wide

false positive rate revealed that Etanq1 is highly significant (p-value < 0.01) according

to the criteria established by the Complex Trait Consortium (Abiola et al., 2003). Etanq1

accounts for 35.5% of the phenotypic variance, with the B6 allele increasing the ethanol-

induced anxiolytic effect (Sen et al., 2007). We used Bayes credible intervals with 97%

coverage to obtain Etanq1’s support interval location (Manichaikul et al., 2006), which

extends from 53.73 Mb to 71.47 Mb across Chr 12 and contains 106 genes.

4.3.4 Confirmation of Etanq1

To confirm the linkage between Etanq1 and ethanol-induced anxiolysis, the LD box assay

was repeated with 6 additional BXD strains from the independently derived panel of AI

lines (Peirce et al., 2004) and supplied from Oak Ridge National Laboratory, rather than

Jackson Laboratory, which supplied the 27 strains used in the provisional genetic screen.

These strains were split into samples based on treatment and genotype at Etanq1’s

peak marker, rs13481514. As shown in Figure 4.4, only the group carrying a B6 allele

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13481251
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3716547
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13481117
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13481514
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Figure 4.3. Provisional QTL for anxiolytic-like response to acute ethanol Genome-
wide interval mapping results for PDT across 27 BXD RI strains following treatment
with saline (blue) or ethanol (red).
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at Etanq1 exhibited a significant increase in PDT following ethanol treatment (p =

5× 10−6). The D2 Etanq1 strains did travel slightly further in the light after ethanol but

the difference was non-significant compared to the saline treated group (p = 0.37).

4.4 Methods

4.4.1 Mice

Details about mice used in these studies are provided in section 2.3.1 on page 35.

4.4.2 Light-dark box behavioral assay

Behavioral testing was conducted as described by Putman (2008). Briefly, all animals

were tested between 10:00 A.M. and 1:00 P.M. Following a 1 hour acclimation period

to the behavioral testing room, animals were restrained in a 50 ml conical tube for 15

minutes followed by IP injections with either physiological saline (0.9%) or 1.8 g/kg

ethanol (12.8% w/v) in 0.9% saline. The restraint stress was employed to create an ar-

tificial baseline level of anxiety-like behavior. This method controlled for environmental

perturbations of anxiety-related behavior in individual mice such as social stress.

Following a 5 minute delay from the time of injection, each animal was placed in

the center of the light chamber facing the entrance to the dark chamber of the LD box.

Once the animal entered the dark compartment, anxiety-like scores were collected in

5 minute intervals for a total of 10 minutes. Behavioral measures were recorded in

both chambers of the light-dark box and included distance traveled, time spent and TLA.

Anxiety-like measures were reported as PTS and PDT to control for locomotor activity.

An increase in either measure was interpreted as a reduction in anxiety-like behavior.

The LD box consists of two equally sized compartments (30 cm × 30 cm × 15
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Figure 4.4. Confirmation of Etanq1. PDT following saline (blue) and ethanol (red) for
6 novel BXD strains (n = 4–7), collapsed into groups based on genotype at Etanq1’s peak
marker location on Chr 12. An ANOVA with Tukey’s HSD post-hoc analysis revealed a
significant allelic effect on this behavior following ethanol treatment (p-value < 0.0001),
with the B6 allele causing a significant increase in the anxiolytic response.



www.manaraa.com

CHAPTER 4. ANXIOLYTIC-LIKE RESPONSE TO ACUTE ETHANOL 103

cm) separated by a black plastic partition with an opening in the middle to allow for

light-dark transitions (Med Associates Inc., St. Albans, VT, USA). The box was enclosed

in a sound-attenuating box equipped with overhead lighting and fan ventilation. The

system was interfaced with Med Associates software enabling automatic measurement

of activity using a set of 16 infrared beam sensors along the X-Y plane.

4.5 Fine-mapping Etanq1

4.5.1 Intra-researcher reliability

Measurements of mouse behavioral phenotypes are extremely sensitive to environmental

effects. Even when great care is taken to standardize testing procedures and environ-

mental conditions across different laboratories, identical strains of mice put through an

identical battery of assays can yield significant laboratory-specific differences (Crabbe

et al., 1999). The researcher handling the mice could be an important factor driving

these differences. This potential source of error was particularly relevant to my thesis,

since fine-mapping Etanq1 required additional BXD strains by a different researcher.

Therefore, to ensure the behavioral measurements I generated for the additional BXD

strains could be integrated with the original data obtained by Dr. Putman, I repeated the

LD box assay with B6 mice and compared our respective results, which are presented in

Figure 4.5.



www.manaraa.com

CHAPTER 4. ANXIOLYTIC-LIKE RESPONSE TO ACUTE ETHANOL 104

0%

10%

20%

30%

40%

50%

Wolen Putman

D
is

ta
nc

e 
tr

av
el

ed
 in

 th
e 

lig
ht

0%

10%

20%

30%

40%

50%

Wolen Putman
Researcher

T
im

e 
sp

en
t i

n 
th

e 
lig

ht
Saline Ethanol

   0

 500

1000

1500

2000

Wolen Putman

To
ta

l l
oc

om
ot

or
 a

ct
iv

ity

Figure 4.5. Reproducibility of ethanol-induced anxiolysis across researchers. LD
box measurements of PDT (left), PTS (middle) and TLA (right) for B6 mice obtained
by the author and Dr. Alex Putman. Red and blue bars represent the means of saline
and ethanol treated mice, respectively. Error bars indicate the mean ± SEM. For both
researchers a significant increase in PDT and PTS was observed following ethanol
treatment. Significance was determined by ANOVA followed by Tukey’s HSD post-hoc
test, the results from which are provided in Tables 4.2, 4.3 and 4.4.
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While some variation between researchers is to be expected, true intra-researcher

reliability requires recreating the significant effect of acute ethanol treatment on the LD

box anxiety measures without introducing significant researcher-specific bias. Indeed,

performing a 2-way ANOVA with treatment and researcher as factors revealed no

significant researcher effect was for PDT (F(1,43) = 1.17, p = 0.28), PTS (F(1,43) =

0.73, p = 0.39) or TLA (F(1,43) = 0.64, p = 0.43). A Tukey’s HSD post-hoc test was also

performed to observe researcher-specific treatment effects across the three measures.

Results for relevant PDT, PTS and TLA comparisons are provided in Tables 4.2, 4.3 and

4.4, respectively.

As expected, ethanol treated mice spent significantly more time (p-value = 1.46e-02)

and traveled significantly further (p-value = 3.63e-02) than their saline treated counter

parts. Thus, I was able to reproduce the anxiolytic-like response to acute ethanol in

B6 mice. While the magnitude of these effects were slightly smaller than Dr. Putman’s,

this may be partially explained by differences in sample size; as my treatment groups

contained only 8 individuals, whereas his contained 15–16. Still, our 95% CIs for

the true difference between saline and ethanol treatment groups largely overlapped

(Figure 4.6) and importantly, no significant effects were observed between researchers

within the saline or ethanol treatment comparisons. That is, there were no statistical

differences between our measures of PDT (saline p-value = 1.0, ethanol p-value =

0.43), PTS (saline p-value = 0.87, ethanol p-value = 0.96) or TLA (saline p-value =

0.72, ethanol p-value = 0.15). As such, the results of this analysis indicated I could

contribute to pool of BXD LD box data generated by Dr. Putman, reasonably confident

that the behavioral data generated for these novel strains would be statistically identical,

regardless of which one of us performed the assay. And it was critical that this was

established before we proceeded with the fine-mapping of Etanq1.
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Table 4.2. Intra-researcher reliability: percent distance traveled in the light

Mean Lower Upper Adjusted
Comparison difference CI CI p-value

Saline:Putman Saline:Wolen 0.05 -10.38 10.49 1.00e+00
Ethanol:Putman Ethanol:Wolen 5.84 -4.48 16.16 4.39e-01
Ethanol:Wolen Saline:Wolen 12.52 0.60 24.43 3.62e-02
Ethanol:Putman Saline:Putman 18.31 9.74 26.87 5.61e-06

Post-hoc comparisons made using Tukey’s HSD for PDT. Similar results are provided for
PTS and TLA in Tables 4.3 and 4.4, respectively.

Table 4.3. Intra-researcher reliability: percent time spent in the light

Mean Lower Upper Adjusted
Comparison difference CI CI p-value

Saline:Putman Saline:Wolen -4.44 -20.15 11.27 8.74e-01
Ethanol:Putman Ethanol:Wolen -2.69 -18.23 12.85 9.67e-01
Ethanol:Wolen Saline:Wolen 21.24 3.30 39.18 1.46e-02
Ethanol:Putman Saline:Putman 22.99 10.09 35.89 1.25e-04

Table 4.4. Intra-researcher reliability: total locomotor activity

Mean Lower Upper Adjusted
Comparison difference CI CI p-value

Saline:Putman Saline:Wolen -139.74 -497.63 218.14 7.25e-01
Ethanol:Putman Ethanol:Wolen 286.45 -67.53 640.42 1.50e-01
Ethanol:Wolen Saline:Wolen -214.52 -623.26 194.21 5.05e-01
Ethanol:Putman Saline:Putman 211.66 -82.13 505.46 2.33e-01
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Figure 4.6. Tukey’s HSD comparisons made for intra-researcher reliability ANOVA.
Visualization of results from Tukey’s HSD post-hoc analysis of the ANOVA performed
to identify systematic differences in the LD box assays performed by the author and
Dr. Alex Putman. Each point represents the mean difference between treatment groups
with lines indicating the 95% CIs. Warmer colors correspond to lower adjusted p-values.
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Table 4.5. Fine-mapped QTL mapped for anxiety and locomotor phenotypes

Phenotype Chr Marker Peak (Mb) Support interval (Mb) LOD

Ethanol PDT 1 rs4222763 165.32 25.632–188.966 3.07
Ethanol PDT 12 rs13481514 70.70 69.125–72.561 5.99
Saline TLA 1 CEL-1_152747565 154.63 25.632–188.966 3.97
Ethanol TLA 2 rs6209325 147.88 5.767–181.542 3.27
Ethanol TLA 9 rs3656996 52.00 10.573–124.039 3.03

4.5.2 Assaying novel BXD strains

Our strategy for refining Etanq1 involved assaying additional BXD strains that carry

informative recombinations within the Etanq1 support interval. Specifically, we sought

to add novel BXD strains derived from the advanced intercross conducted by Peirce et al.

(2004). Their breeding strategy entailed many additional rounds of intercrossing prior

to inbreeding. As a result, these novel BXD strains contain twice as many reomcinbation

events, providing greater genetic resolution for QTL mapping. An initial haplotype

analysis of all novel BXD strains revealed that several strains carried a combination of

B6 and D2 haplotypes in the region of interest. We predicted that including these strains

in the QTL analysis would greatly enhance the genetic mapping resolution. Figure 4.7

displays the genotype distributions for all available BXD strains carrying at least one

recombination event within the plotted region and indicates the novel strains that were

chosen for fine-mapping.

4.5.3 Fine-mapped Etanq1 QTL analysis

As predicted, including the BXD strains from the Etanq1 confirmation experiment

and the novel strains chosen for fine-mapping greatly enhanced the genetic mapping

resolution. Repeating strain-mean interval mapping for PDT following acute ethanol

treatment increased Etanq1’s peak LOD score to 5.99 and shifted its peak linkage

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs4222763
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs13481514
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs6209325
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3656996
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Figure 4.7. BXD genotypes across Etanq1 support interval. Only BXD strains har-
boring recombination events within the region are included. Each strain’s sequence of
alleles runs horizontally along the grid. Strain order was determined through hierar-
chical clustering of allele sequences based on their Euclidean distance. Shapes along
the left axis indicate whether a particular strain was assayed as part of the provisional
mapping phase, the confirmation study or the fine-mapping effort. Black ticks along the
x-axis indicate genetic marker location.



www.manaraa.com

CHAPTER 4. ANXIOLYTIC-LIKE RESPONSE TO ACUTE ETHANOL 110

0

1

2

3

4

5

6

0

1

2

3

4

5

6

P
rovisional

F
ine−

m
apped

 20  40  60  80 100 120
Chr 12 position (Mb)

LO
D

 s
co

re

Figure 4.8. Etanq1’s provisonal and fine-mapped QTL across Chr 12. Strain mean
interval mapping results for original 27 BXD strains (top) and expanded sample (red).
The additional BXD strains caused the QTL’s peak to narrow and proximally shift its
region of peak association. Dashed and solid horizontal lines indicate genome-wide
p-values of 0.05 and 0.01, respectively. The location of genetic markers used in this
analysis are indicated by the vertical dashed plotted along the x-axis.
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Figure 4.9. Etanq1’s fine-mapped support interval The original (blue) and fine-
mapped (red) 97% support intervals for Etanq1 across a subsection of Chr 12. Grey
seismograph across the x-axis indicates the number of polymorphisms per kilobase
(1× 20−1) between B6 and D2.
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location proximally by ≈ 2 Mb (Figure 4.8). Most encouragingly, these additional strains

substantially narrowed Etanq1’s support interval. While Etanq1’s provisional support

interval spanned nearly 18 Mb, the fine-mapped support interval spans only 3.4 Mb

(Table 4.5).

A comparison of the provisional and fine-mapped support intervals is provided in

Figure 4.9. Using D2 genome sequence information, we counted all B6/D2 SNPs across

Chr 12 and plotted the densities along the x-axis of Figure 4.9. Doing so revealed which

regions are polymorphic and which are identical by descent (IBD) between the B6 and

D2. More specifically, the fine-mapped Etanq1 support interval appears to be centered

around a highly polymorphic region flanked by areas that are nearly IBD. While the

entire support interval should be explored by candidate QTGs, this highly polymorphic

region between 70.9–71.5 Mb is of particular interest.

4.5.4 Haplotype analysis of refined Etanq1 support interval

Following the success of the initial fine-mapping effort described above, we examined the

haplotype structure of the Etanq1 region. The purpose of this analysis was to determine

whether continuing to assay additional BXD strains would provide substantive gains

in genetic mapping resolution. The r2 measure of LD was calculated for all pairwise

combinations among the 162 genetic markers across Chr 12, using genotype data for

all 93 BXD strains. The haplotype map produced from this analysis is presented in

Figure 4.10. Superimposed on this map are the provisional and fine-mapped Etanq1

support intervals.

The results from this analysis suggest how Etanq1’s support interval could be nar-

rowed so dramatically with the addition of relatively few novel strains. If we roughly

define a haplotype block as a chromosomal segment in which all genetic markers have
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r2 ≥ 0.7, then the original Etanq1 support interval is largely comprised of at least 3 large

haplotype blocks. Among the 27 original BXD strains used in the provisional mapping

of Etanq1, only a handful carry recombination events within this region. It was only

with the addition of the novel recombination events provided by the AI BXD strains

that differential associations among these haplotype blocks could manifest and the most

distal haplotype could emerge as the strongest driver of variation in PDT. These results

also indicate that continuing to assay novel strains from the panel of currently available

BXD strains is unlikely to narrow Etanq1’s support interval any further, as the current

support interval almost perfectly encompasses a haplotype block in which the r2 for all

markers is ≥ 0.87.

4.6 Screening for Etanq1 candidate genes

Given the limited potential for further refinement of the Etanq1 support interval via

genetic mapping, we proceeded to dissect the QTL and prioritize potential candidate

QTGs. According to Mouse Genome Informatics website, the fine-mapped support

interval for Etanq1 harbors 41 protein-coding genes or ncRNAs, 66 fewer than the

original interval, which substantially reduces the pool of potential candidate genes.

Still, 41 genes is not an insubstantial number, particularly in the context of performing

molecular validation experiments. We sought to prioritize these positional candidates

through a series of integrative analyses that combined phenotypic data from the LD box

assay, microarray gene expression data from the PFC, NAc and VMB datasets described

in Chapter 2 and genomic sequence data from the B6 and D2 inbred strains.
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Table 4.6. Significant cis eQTL within Etanq1

Gene Mb Region Probe-set Marker LOD p-value

Sos2 70.72 NAc 1443057_at rs6344105 9.11 1.00E-04
Sos2 70.72 VMB 1443057_at rs6344105 10.24 0.00E+00
Atp5s 70.83 NAc 1459949_at rs3716547 5.15 2.90E-03
Map4k5 70.98 NAc 1440059_at rs6346026 5.17 6.00E-03
Nin 71.11 NAc 1419078_at rs6344105 4.09 1.30E-02
Trim9 71.35 NAc 1443989_at rs6344105 4.71 1.40E-02

4.6.1 cis eQTL analysis

The microarray expression data was used to identify genes whose expression levels

were regulated by local polymorphisms uncovered by the eQTL analysis described in

Chapter 3. Only 5 positional candidate genes within Etanq1’s support interval were

associated with a signifiant cis eQTL in either the PFC, NAc or VMB (Table 4.6). All

5 of these genes are clustered within the highly polymorphic region we defined in

section 4.5.3 that lies in the center of Etanq1’s fine-mapped support interval (Figure 4.9).

Although it’s not listed in Table 4.6, Sos2 also has a suggestive cis eQTL in PFC that fell

just below the significance threshold; still, it stands out as the only gene of the 5 with a

strong cis eQTL in all three brain regions.

The results from the probe-set SNP analysis described in section 2.6.2 were used

here to identify any potentially spurious cis eQTL caused by polymorphism hybridization

artifacts. Three of the probes within Map4k5’s probe-set 1440059_at overlap D2 SNPs;

one probe actually overlap two SNPs. Removing the affected probes and repeating the

QTL analysis produced only a weak association with local genetic markers, strongly sug-

gesting this was in fact a spurious cis eQTL. The probe-set targeting Sos2, 1443057_at,

contains one probe overlapping a D2 SNP. However, its associated cis eQTL in the NAc

and VMB were only mildly affected by the removal of this probe and in both regions

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs6344105
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs6344105
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs3716547
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs6346026
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs6344105
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs6344105
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Table 4.7. Correlations between expression of Etanq1-region genes and PDT

Probe-set Gene Mb r Region q-value

Nin 1419078_at 71.12 -0.68 NAc 1.59e-03
Sos2 1443057_at 70.72 0.59 NAc 1.71e-02
Trim9 1434595_at 71.37 0.55 NAc 3.31e-02

the association was still significant. As such, unlike Map4k5, Sos2 is still a high priority

candidate based on its eQTL results.

4.6.2 Correlation analysis with Etanq1 candidate genes

Further prioritization was accomplished by correlating each positional candidate’s

expression with the anxiety behavior of interest, PDT following ethanol, and taking

into account the strength of these associations. This correlation analysis was carried

out for all three of the profiled brain regions. Figure 4.11 depicts correlational strength

between PDT and all genes that reside within the vicinity of Etanq1, plotted against

their genomic locations. This visualization demonstrates the confounding impact of

LD, as the correlational strength gradually begins to rise for all genes the closer there

proximity is to the peak of Etanq1.

After applying an FDR to correct for the multiple tests conducted within each brain

region, we found significant correlations between three positional candidate genes that

clearly standout in Figure 4.11. Among these standouts are Sos2, Trim9 and Nin. The

negative correlation between Nin’s expression in the NAc and PDT was particularly

robust at (r = -0.67). It’s interesting to note that all significant correlations existed

between PDT and NAc expression traits.



www.manaraa.com

CHAPTER 4. ANXIOLYTIC-LIKE RESPONSE TO ACUTE ETHANOL 117

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

●

●
●

● ●●

●
●
●● ●● ●

● ●● ●●● ●● ●● ●● ●●● ●●●● ●● ●● ●●●●●● ● ●●●●●● ● ● ●● ●●●● ●●●● ●●● ●● ●● ●●● ●●● ● ● ● ●●● ●●● ● ●● ●●● ●●● ●●● ● ●● ●●● ●● ●● ● ● ●●●● ●●● ●●●● ●● ●●●● ● ●●● ● ●●● ●● ●● ●●

Psma3Map4k5Atp5s

●

●

●

●
●

●

● ●● ●●
●● ● ●

●
●● ●●●● ●●●● ● ●● ●●● ●● ●● ●●● ● ●●●●● ●●● ●●● ●●● ●●●● ●●●● ●●●● ● ●●● ● ● ●● ●●●● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ● ●●●● ●●● ●●●● ●●● ●●● ●●● ● ● ●● ● ●

Nin

Sos2
Trim9

●
●●

●

●●
● ●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●● ● ●●●● ●● ● ●●● ● ●●● ●● ●● ●●●● ●●● ● ●● ● ●● ●●●●●● ● ●●● ●●● ● ●●● ● ●●● ● ●●● ●● ●●●●

Atp5sSos2

P
FC

N
A

c
V

M
B

68 69 70 71 72 73 74 75
Chr 12 position (Mb)

−
lo

g 1
0 p

−v
al

ue

Figure 4.11. Correlations between expression of Etanq1-region genes and PDT
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Table 4.8. Distribution of transcribed SNPs within Etanq1

Gene Intron UTR Exon Synonymous Mis-sense

Klhdc1 1 0 0 0 0
Gm71 44 4 2 2 0
Sos2 90 2 1 1 0
L2hgdh 21 1 1 1 0
Atp5s 8 10 1 0 1
Cdkl1 110 1 0 0 0
Map4k5 209 1 3 3 0
Atl1 61 15 1 1 0
Sav1 7 0 0 0 0
Nin 263 38 13 9 4
Pygl 163 1 6 5 1
Trim9 404 0 2 2 0
Tmx1 24 2 1 1 0
Frmd6 7 11 0 0 0
Actr10 3 0 0 0 0
Psma3 5 0 1 1 0
Arid4a 2 2 0 0 0
2700049A03Rik 10 0 1 0 1

All transcribed SNPs within Etanq1 were analyzed and annotated as members of an
intron, an untranslated region or an exon. The right panel indicates whether an exonic
SNP causes a synonymous or non-synonymous amino acid (AA) substitution.

4.6.3 SNP analysis of Etanq1 candidate genes

An analysis of the sequence variation that exists between the B6 and D2 genomes

was carried out for all Etanq1 positional candidates. Unlike the previous strategies for

prioritizing candidate genes described in sections 4.6.1 and 4.6.2, the results of this

analysis were independent of microarray gene expression data. There are a total of

3,019 SNPs within Etanq1’s support interval. Just over half (51.5%) of these SNPs fall

within a gene coding region, while only 33 belong to an exon. Collectively, Trim9 was

the most polymorphic gene, harboring over 400 B6D2 SNPs. Though only a handful of
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these SNPs fall outside of an intronic region. If we ignore intronic SNPs, Nin is the most

highly polymorphic gene in the region, comprising by far the largest of untranslated

region (UTR) and exonic SNPs. However, our interest was ultimately not in the number

of SNPs within a gene, but the potential of each SNP to produce a protein that is

functionally polymorphic.

In order to determine whether of these identified coding SNPs are likely to affect

protein function, we employed a web-based bioinformatics tool called functional analysis

of novel SNPs (FANS), which was developed by Liu et al. (2008) and is accessible

at http://fans.ngc.sinica.edu.tw/fans. FANS incorporates several well characterized

algorithms for identifying non-synonymous SNPs and predicting whether the AA change

will carry functional consequence, including SIFT (Ng and Henikoff, 2003) and PolyPhen

(Ramensky et al., 2002), and conveniently integrates the results into a ranking scheme

that assesses how “risky” a SNP is to the functional health of the encoded protein.

Using FANS to analyze the 33 exonic SNPs within Etanq1 identified 7 that represent

non-synonymous mutations (Table 4.9). Four of these non-synonymous SNPs were

located within Nin, while the remaining 3 located within Atp5s, Pygl and a Riken cDNA

clone. Of these 7 SNPs, two were identified by FANS as being “high risk,” specifically

because the altered AAs both fell within a known protein domain. Both high risk SNPs

belonged to Nin exons.

4.7 Discussion

4.7.1 Candidate gene prioritization

Through the addition of novel BXD strains and variety of integrative genomic analyses

we were able to substantially narrow the significant QTL on Chr 12 underlying the

http://fans.ngc.sinica.edu.tw/fans
http://sift.bii.a-star.edu.sg
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Table 4.9. Etanq1 functional SNP analysis

Gene Mb B6 AA D2 AA Risk

Atp5s 70,842,781 Val Ile Low
Nin 71,144,164 Glu Lys Medium
Nin 71,144,373 Arg Gln Low
Nin 71,144,376 Ser Tyr High
Nin 71,144,902 Lys Glu High
Pygl 71,302,864 Met Val Low
2700049a03rik 72,295,279 Asp Asn Low

anxiolytic-like response to acute ethanol, originally identified by Putman (2008). The

fine-mapped support interval for Etanq1 now spans a regions less than 4 Mb long and

harbors 44 genes. Initially, it appeared that five of these genes were associated with a

significant cis eQTL in the region. However, the eQTL underlying Map4k5’s probed to

be a spurious association driven by unaccounted for SNPs within several probe binding

regions.

We analyzed the expression patterns for all positional candidate genes in all three

brain regions in order to identify genes that were co-expressed with PDT following acute

ethanol exposure. Given the important role of the PFC in regulating the amygdala via

glutamatergic projections, we hypothesized genes in the PFC would exhibit the strongest

relationship with our anxiety-like measurements. However, we observed the strongest

correlations existed between PDT and expression levels in the NAc (Figure 4.11). While

the NAc is not generally associated with anxiety regulation, several recently published

studies indicate that perhaps it should be. Kim et al. (2008) demonstrated that using

small interfering RNA (siRNA) to down-regulate Adcy5 in the NAc, specifically, produced

a significant anxiolytic-like response in B6 mice. Furthermore, over-expression of CREB

in the NAc is able to rescue the enhanced level of anxiety exhibited by rats that have

been socially isolated (Barrot et al., 2005).
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The results of our correlation analysis also suggested that the NAc plays an important

in regulating anxiety-like responses. After correcting for multiple testing, PDT variation

was significantly correlated with the expression levels of only three genes—and all three

correlation relationships existed in the NAc (Table 4.7). These three genes included

Trim9, Sos2 and Nin. The strongest association was with ninein (Nin)’s expression in

NAc, which negatively correlated so that higher levels of Nin transcript correspond to a

smaller anxiolytic-like response to acute ethanol.

Finally, we also took into account whether positional candidate genes harbored

functional polymorphisms that could alter protein function but may have no effect on

transcript abundance. A total of 11 genes contained at least one B6/D2 polymorphism

with an exon coding region (Table 4.8). Seven of these exonic SNPs represented mis-

sense mutations within 4 different genes: Atp5s, Nin, Pygl and an uncharacterized gene,

2700049A03Rik. Nin harbors two SNPs that are predicted to alter in D2 mice the AA of

a conserved protein domain that binds DNA and facilitates chromosomal segregation

(Table 4.9).

4.7.2 Ninein is a strong candidate QTG underlying Etanq1

Taken together, these results suggest Nin is a strong candidate QTG underlying Etanq1.

It’s difficult to speculate as to the functional role Nin might play in mediating ethanol

induced anxiolysis, as it primarily characterized as a centrosomal protein that plays

a role in microtubule positioning (Stillwell et al., 2004). However, it does share

one potentially important link with the genomic analyses of acute ethanol responses

performed in Chapter 2 and Chapter 3. Experiments conducted using yeast two-hybrid

assays have determined that Nin directly interacts and is phosphorylated by Gsk3β

(Hong et al., 2000; Howng et al., 2004), which was one of top ethanol responsive genes
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identified in the PFC (Figure 2.6) and among the most densely interconnected hub

within ErGeN3 (Figure 3.7).
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Chapter 5

Future directions

Defining complex endophenotypes such as acute ethanol sensitivity in terms of gene

networks, rather than the genetic variants that influence them, has the potential to yield

information about complex diseases that is more generalizable to humans. Network

function, rather than individual gene influences, is likely more conserved evolutionarily.

The ethanol-responsive gene-enriched networks defined in Chapter 3 could assist human

GWA studies by providing a novel source of functionally related candidate genes. The

fact that several of the major ErGeN hub genes have been recently implicated in GWA

studies suggests this approach is highly promising. Co-analysis of human GWA studies

and ErGeN hub genes may provide bidirectional validation for such genes, even leading

to candidates for therapeutic targeting. However, taken out of context, such single genes

still do not define the mechanisms underlying cellular, neural network or behavioral

responses to ethanol, which remains our chief objective in identifying and dissecting

these gene networks.

Direct validation of hub genes, in terms of both gene network regulation and pheno-

typic responses, are required to fully understand the role of these ethanol-responsive

networks in complex behavioral responses. Ongoing studies in the Miles laboratory seek

123
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to adapt and extend this approach, through genetic manipulation of ErGeN hub genes,

in order to observe downstream effects on the original ethanol-responsive network

as well as the network-associated ethanol behavioral phenotypes. Such validation of

network-derived candidates could provide a novel approach to future pharmacothera-

pies for AUD, directed against regulation of a gene network rather than function of a

single protein.

An obvious next step is to extend this research to incorporate the NAc and VMB

data in the network analyses. A preliminary analysis of ethanol responsive networks

conducted in all three regions using WGCNA (Zhang and Horvath, 2005) produced

some interesting results that should be pursued further. For example, the identified

gene networks were largely preserved across across all three brain regions (Figure 5.1).

That is, comparing the gene constituencies of each network across regions revealed

substantial overlap between them Figure 5.2. Furthermore, we found that brown

module’s eigengene (Zhang and Horvath, 2005) in the NAc was strongly associated with

the post-ethanol TLA data generated by (Putman, 2008) in the Miles laboratory (r =

0.52, p-value = 9.90E-04). Dissecting this networks could provide novel insight into the

molecular mechanism driving this ethanol relevant phenotype.
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Figure 5.2. Overlap among ethanol responsive networks across PFC, NAc and
VMB. The contingency tables above indicate the number of probe-sets in common
between the corresponding row and column modules. The total probe-set counts for
each module are provided in the axis labels. Fisher’s exact test was used to to determine
the statistical significance of overlapping modules, -log(p-values) from this analysis
were used to color code the table.

Future work will focus on incorporating more advanced statistical methods that

make it possible to refine the connections within a gene network and infer causal

relationships among genetic variants, high-throughput molecular data and complex

phenotypes. An excellent example of how effective such methods can be is provided by

Schadt et al. (2005). Using the same liver expression dataset described in section 1.5.3,

and a novel network construction technique called likelihood-based causality model

selection (LCMS), the investigators first identified all QTLs associated with a classical
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phenotype and then winnowed the list of potentially associated gene-expression traits

on the basis of their correlation or eQTL overlap with the phenotype of interest, FPM.

Candidate genes then were ranked by applying using LCMS, which uses the eQTL data

to establish causal relationships between genetic loci and transcripts, as well as between

transcripts and phenotypes, and finally identifies a model that best fits the data.

By ranking genes according to their performance in these models, the investigators

identified several novel obesity candidate genes as well as uncovered additional support

for the involvement of a gene called Hsd11b1 that previously had been implicated

in obesity risk (Rask et al., 2002). Because this gene seemed to be relevant to the

phenotype they were investigating, the researchers then sought to reconstruct the

gene network in which Hsd11b1 participates by performing the LCMS procedure with

Hsd11b1 as the trait of interest. The resulting network was able to successfully predict

genes that would be affected by inhibition of Hsd11b1. This progression from phenotype

to gene network to candidate gene and back to a gene network is a striking example of

the promise that combining genetical genomics and gene-network analysis provides for

understanding complex traits such as alcoholism.
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R code

A.1 fishers_sscore

Function to identify ethanol responsive genes.

# fishers_sscore
################################################################################

# Identify Affymetrix probe-sets exhibiting significant expression variation
# by applying Fisher’s combined probably test to S-score expression data.

# ARGUMENTS
# sscores: matrix of sscore expression data generated with the SScore package

# parallel: logical, If TRUE multicore package is loaded and all analysis
# is split among all available cores.

# n.core: number of cores to use for parallel execution. If unspecified all
# available cores will be used.

fishers_sscore <- function(sscores, n.perm, plot.results,
parallel = FALSE, n.cores, verbose = FALSE){

if(is.data.frame(sscores)) {
sscores <- as.matrix(sscores)

}

# Print status
print_status <- function(message) {

149
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if(verbose) {
dt <- format(Sys.time(), "%D %r")
writeLines(paste("\n", dt, "-", message, "\n"))

}
}

# Fisher’s method to combine p-values
fishers_method <- function(data){

S <- apply(data, M = 1, F = function(x) sum(-2 * log(x)))
pvalue <- pchisq(S, df = ncol(data) * 2, lower.tail = F)
return(data.frame(S, pvalue, row.names = rownames(data)))

}

# Probeset resampling function
permute <- function(x) {

p <- sample(x, length(x), replace = F)
return(p)

}

# Calculate empirical p-values from a matrix of permuted data
calc_emp <- function(obs, perm) {

emp.p <- apply(perm, 2, function(x)
sum(x > obs) / length(x))

emp.p <- mean(emp.p)
return(emp.p)

}

# Identify number of available cores and register parallel backend
if(parallel){

print_status("Initializing multicore backend")
require(multicore, quietly = T)
require(doMC, quietly = T)
available.cores <- multicore:::detectCores()

if(available.cores < 2){
parallel <- FALSE
writeLines(paste("Sorry, you don’t actually have a multicore CPU.\n",

"Perhaps it’s time to upgrade?\n\n", sep = ""))
}

if(missing(n.cores)){
n.cores <- available.cores

} else {
if(n.cores > available.cores){

n.cores <- available.cores
}

}
registerDoMC(cores = n.cores)

}

# Convert sscores to pvalues
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print_status("Performing p-value transformation for observed data")
pscores <- 2 * pnorm(abs(sscores), lower.tail = F)

# Combine p-values
print_status("Combining observed p-values")
obs.results <- fishers_method(pscores)

# Permutations
##############
print_status(paste("Performing", n.perm, "permutations"))

# Generate permuted matrix and calculate significance values
# Return a list containing an entry for each permutation
if(parallel) {

perm.results <- foreach(p = 1:n.perm) %dopar% {
perm.data <- apply(pscores, M = 2, F = permute)
fishers_method(perm.data)

}
} else {

perm.results <- list()
for(p in 1:n.perm) {

perm.data <- apply(pscores, M = 2, F = permute)
perm.results[[p]] <- fishers_method(perm.data)

}
}

# Calculate empirical pvalues
#############################
print_status("Calculating empirical p-values")
perm.s <- do.call("cbind", lapply(perm.results, function(x) x$S))

if(parallel) {
epval <- mclapply(obs.results$S, function(x) calc_emp(x, perm.s))
epval <- unlist(epval)

} else {
epval <- sapply(obs.results$S, function(x) calc_emp(x, perm.s))

}

# Calculate observed and empirical qvalues
obs.results$emp.pvalue <- epval
obs.results$qvalue <- p.adjust(obs.results$pvalue, method = "fdr")
obs.results$emp.qvalue <- p.adjust(obs.results$emp.pvalue, method = "fdr")

print_status("Finished")
return(obs.results)

}
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A.2 ggAffy_ProbePlot

Function to visualize probe-level intensity data for multiple probe-sets from an AffyBatch

object. Colors can be mapped to samples using color.var to specify a variable stored

in the PhenoData slot.

# ggAffy_ProbePlot
################################################################################
# object: an AffyBatch-class
# probesets: character vector of probeset IDs.
# (warning: plot starts to become useless with > 5 probesets)
# color.var: variable to use for color mapping
# mm: logical, should mismatch probes be plotted
# fixed_yaxis: logical, should the y-axis be fixed across probe-sets
# log2: logical, should intensity be log transformed

# DETAILS
# color.var must be a character vector of length 1 that identifies a
# variable in the AffyBatch object’s phenoData slot. For best results it should
# be a qualitative variable with fewer than 9 levels. An example use case is to
# color samples by genotype at a particular loci to look for probe x allele
# interactions.

# EXAMPLE
# data(Dilution)
# probesets <- sample(featureNames(Dilution), size = 3)
# ggProbePlot(Dilution, probesets, mm = T)
# ggProbePlot(Dilution, probesets, color.var = "scanner", mm = T)

ggAffy_ProbePlot <- function(object, probesets, color.var,
mm = T, log2 = T, fixed_yaxis = F){

require(affy)
require(ggplot2)

if(class(object) != "AffyBatch"){
stop("object must be an AffyBatch object.", call. = F)

}

# Obtain specified probe-set’s probe index and extract expression data
pm.index <- indexProbes(object, "pm", genenames = probesets)
exp <- melt(lapply(pm.index, function(x) intensity(object)[x,]))
exp$type <- "pm"

# Include mismatch data if specified
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if(mm){
mm.index <- indexProbes(object, "mm", genenames = probesets)
mm.exp <- melt(lapply(mm.index, function(x) intensity(object)[x,]))
mm.exp$type <- "mm"

# Combine pm & mm data
exp <- rbind(exp, mm.exp)
exp$type <- factor(exp$type, levels = c("pm", "mm"))

}

# Rename columns and provide ordered probe labels
names(exp) <- c("index", "sample", "intensity", "probeset", "type")
exp <- ddply(exp, .(sample, probeset, type), transform,

Probe = factor(1:length(index)))

# Maintain probesets order
exp$probeset <- factor(exp$probeset, levels = probesets)

# Add column for specified phenotypic variable
if(!missing(color.var)){

if(!validObject(object@phenoData)){
stop(paste("AffyBatch object must contain phenoData",

"AnnotatedDataFrame in order to map colors to a variable." ), .call = F)
}
# Create new data frame aligning samples and color variable
var.data <- data.frame(sample = sampleNames(object),

variable = pData(object)[, color.var])
# Add to exp data.frame
exp <- merge(exp, var.data, by = "sample")

}

# log2 transform data
if(log2){

exp$intensity <- log2(exp$intensity)
}

# Construct basic plot framework
exp.plot <- ggplot(exp) +

aes(Probe, intensity, group = sample) +
geom_line(alpha = .25) +
opts(title = "Probe-level expression",

plot.margin = unit(rep(0, 4), "lines"))

# Accommodate multiple probes if necessary
if(length(probesets) > 1){

fixed_yaxis <- ifelse(fixed_yaxis, "fixed", "free_y")
exp.plot <- exp.plot + facet_grid(probeset~., scales = fixed_yaxis)

} else {
exp.plot <- exp.plot +

opts(title = paste(probesets, "probe-level expression"))
}
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# yaxis label
if(log2){

exp.plot <- exp.plot + ylab(expression(log[2] * " intensity"))
} else {

exp.plot <- exp.plot + ylab("Raw intensity")
}

# Map linetype aesthetic to probe type
if(mm){

exp.plot <- exp.plot + aes(group = sample:type,
linetype = type) +
scale_linetype("Probe\ntype")

}

# Map color aesthetic to provided variable
if(!missing(color.var)){

if(nlevels(exp$variable) <= 9){
exp.plot <- exp.plot + aes(color = factor(variable)) +

scale_color_manual(color.var, values =
head(RColorBrewer::brewer.pal(9, "Set1"), nlevels(exp$variable)))

} else {
exp.plot <- exp.plot + aes(color = factor(variable)) +

scale_color_discrete(color.var)
}

}

return(exp.plot)
}
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A.3 ggAffy_Hist

Simultaneously visualizing the probe intensity histograms for all samples in a dataset is a

very useful quality assessment procedure. Outlier samples can be easily spotted with this

approach, even when their deviation from the dataset isn’t so apparent with boxplots of

probe intensities. As with the default hist function provided by the affy package, you

can specify whether histograms should be generated using intensities for PM probes,

MM probes or both. However, intensity histograms generated for large datasets typically

suffer from over-plotting, making it difficult to determine which line corresponds to

which sample. ggAffy_Hist provides a solution to this issue by allowing users to

specify a subset of samples and comparing them to a reference array, which is added

to the figure when median.ref = TRUE. The reference array is created by calculating

probe-wise medians across the entire dataset, not just the subset group. This makes it

possible to see how the distributions of each subset compare to the larger dataset. I

typically use this function in a loop that generates one figure for every 8 samples; any

more and the readability begins to suffer.

# ggAffy_Hist
################################################################################
# object: an AffyBatch-class
# which: character, use pm probes, mm probes or both
# samples: optional character vector of samples indicating a subset of arrays
# in AffyBatch to plot
# log2: logical, should intensity be log transformed
# median.ref: logical, generate and plot a common psuedo-array reference

# DETAILS
# A vector of samples can be supplied to generate histograms
# for a subset of the dataset. Setting median.ref to TRUE will facilitate
# comparison of each of subset with the entire dataset by generating a
# synthetic array created by calculating probe-wise medians and plotting
# its intensity histogram.

# EXAMPLE
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# data(Dilution)
# ggAffy_Hist(Dilution, which = "pm")
# ggAffy_Hist(Dilution, which = "both")

# sample.sub <- sampleNames(Dilution)[1:2]
# ggAffy_Hist(Dilution, which = "pm", samples = sample.sub, median.ref = T)

ggAffy_Hist <- function(object, which = "pm", samples, log2 = T, median.ref = F){

require(affy, quietly = T)
require(ggplot2, quietly = T)

if(class(object) != "AffyBatch"){
stop("object must be an AffyBatch object.", call. = F)

}

# Use all samples if no subset is provided
if(missing(samples)){

samples <- sampleNames(object)
}

# x-axis label
x.lab <- paste(ifelse(which == "both", "PM/MM", toupper(which)),

"probe intensity")

# Extract raw probe intensities
if(log2){

exp <- log2(intensity(object))
x.lab <- bquote(log[2] ~ .(x.lab))

} else {
exp <- intensity(object)
x.lab <- paste("Raw", x.lab)

}

# Function to calculate kernel density for each column
# and return a df with xy coordinates
density_df <- function(exp){

lst <- apply(exp, M = 2, F = density)
d.x <- do.call(cbind, lapply(lst, function(x) x$x))
d.y <- do.call(cbind, lapply(lst, function(x) x$y))

return(data.frame(
"x" = as.numeric(d.x),
"y" = as.numeric(d.y),
"sample" = rep(colnames(d.x), each = nrow(d.x))))

}

# Obtain probe indices and store in long format expression df
probes <- unlist(indexProbes(object, which))
dens_df <- density_df(exp[probes, samples])

# Maintain original sample order



www.manaraa.com

APPENDIX A. R CODE 157

dens_df$sample <- factor(dens_df$sample, levels = samples)

# Generate a median chip to compare all arrays
if(median.ref){

mdn.chp <- density_df(data.frame(median = rowMedians(exp)))
hist.plot <- ggplot() +

geom_area(data = mdn.chp,
aes(x = x, y = y, fill = sample), color=NA, alpha=.4) +

scale_fill_manual("Dataset\nmedian", values = "grey50")
} else {

hist.plot <- ggplot()
}

# Render plot
hist.plot <- hist.plot +

geom_line(data = dens_df,
aes(x = x, y = y, color = sample)) +

xlab(x.lab) + ylab("Density")

# Use Color Brewer Set1 palette if batch contains fewer than 9 samples
if(length(samples) <= 9){

hist.plot <- hist.plot +
scale_color_manual("Sample", values =

head(RColorBrewer::brewer.pal(9, "Set1"), length(samples)))

} else {
hist.plot <- hist.plot +

scale_colour_discrete("Sample")
}

return(hist.plot)
}
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A.4 snp_prober

As described in section 2.6.2, unaccounted for polymorphisms within microarray probe

target regions may affect probe/target hybridization and skew reported measurements of

transcript abundance. This collection of functions was implemented to make convenient

the process of identifying problematic probes on an Affymetrix GeneChip microarray.

These functions rely heavily upon data provided by Bioconductor and depend on the

following packages:

• BSgenome

• Biostrings

• GenomicRanges

• IRanges

Optional arguments for find_probeSNPs include probesets, num.mm, parallel

and n.cores. The probesets arguments makes it possible to specify a subset of probe-

sets, by default all probe-sets that map to the specified chr are processed. Setting the

parallel argument to TRUE will enable the most resource-intensive components of

this process to be distributed across multiple central processing unit (CPU) cores through

integration with the foreach package (Analytics, 2011). Doing so substantially reduces

the amount of time required for this analysis to complete. By default, all available

cores are used. As using all available cores is not always desirable and in some cases

may affect system stability, the user may specify the number of cores to make available

with the n.cores argument. The backend that foreach relies on is provided by the

multicore package (Urbanek, 2011), which, as of this writing, only supports unix-like
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operating systems like Mac OS X, Linux and Solaris. Therefore snp_prober cannot be

run in parallel on Windows.

The chr argument is required because snp_prober currently supports matching to

one chromosome at a time. Although I plan to remove this limitation in future versions,

the matching process is so resource-intensive that a user will typically want to split up

probe-sets into smaller batches anyway and doing so by chr is a natural strategy. The

probesets argument allows the user to further subset the number of probes to process.

Any probe-sets that do not map to the specified chr will be discarded.

# snp_prober
################################################################################

# Identify Affymetrix probe target sequences that are polymorphic relative
# to a list of user supplied alleles and positions.

# The position of each probe binding region is determined by aligning
# target sequence to genome.

# ARGUMENTS
# microarray: character, name of the affymetrix platform (eg mouse4302)
# probesets: optional character vector of probesets to query for SNPs,
# if provided any chr and chr.range information is ignored

# chr, chromosome that supplied probesets AND SNPs reside on
# this can handle only one chromosome at a time!

# snp.pos, numeric vector of SNP bp positions

# parallel, logical. If TRUE multicore package is loaded and all analysis
# is split among all available cores.

# n.cores, number of cores to use for parallel execution. If unspecified all
# available cores will be used.

# DETAILS
# The probe SNP analysis will be performed on a subset of probesets if a
# list of probesets is provided. Or on a subset of probesets that map to
# specificed chromosome and/or chromosome region. Otherwise the analysis is
# performed on all probesets available for affy platform.

# USER MUST SUPPLY VECTOR THAT SPECIFIES THE probeset chr location
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# Each probe sequence is matched against the latest genome sequence data,
# and probe positions are returned from these perfect matches. Where
# a perfect match can not be found, probe positions are then deduced
# using the positions of their surrounding probes and labeled as inferred.

# num.mismatches; every allowable mismatch causes the matching process to
# take substantially longer

snp_prober <- function(microarray, chr, probesets, num.mm = 0,
parallel = F, n.cores, install.missing = T, span.exons = F, attempt.bm = 3){

# Required libraries
require(BSgenome, quietly = T)

if(missing(chr) | length(chr) > 1) {
stop("You must specify a single chromosome.", call. = F)

}

# Load bioconductor annotation packages for microarray
anno.pkgs <- load_annotations(

microarray, type = c("db", "probe"), install.missing)
db.pkg <- anno.pkgs["db"]
probe.pkg <- anno.pkgs["probe"]

# Determine organism and create BSgenome friendly name
organism <- eval(as.name(paste(microarray, "ORGANISM", sep = "")))
BS.organism <- gsub("(^\\w{1})\\w+\\s(\\w+)", "\\1\\2", organism)

# Identify most recent genome package
genomes <- available.genomes()
genome.pkg <- sort(

genomes[grep(BS.organism, genomes)], decreasing = T)[1]

# Install genome package if neccessary
if(!genome.pkg %in% installed.genomes()) {

if(install.missing){
writeLines(paste("\nInstalling ", organism, " genome package:\n",

genome.pkg, "\n\nSit tight. This could take a while...\n", sep = ""))
source("http://www.bioconductor.org/biocLite.R", verbose = F)
biocLite(genome.pkg)

} else {
stop(paste("Please install the", organism, "genome package", genome.pkg,

"\nor set install.missing = T to have it done for you."), call. = F)
}

}

# Load genome package
require(genome.pkg, character.only = T, quietly = T)

# Ensure all neccessary packages are loaded
all.pkgs <- as.character(c(db.pkg, probe.pkg, genome.pkg))
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loaded <- all.pkgs %in% gsub("package:", "", search())

if(sum(!loaded)) {
stop(paste("Missing the following packages:\n",

paste(all.pkgs[loaded], collapse = "\n"), sep = ""), call. = F)
}

# Identify number of available cores and register parallel backend
if(parallel){

require(multicore, quietly = T)
require(doMC, quietly = T)
available.cores <- multicore:::detectCores()

if(available.cores < 2){
parallel <- FALSE
writeLines(paste("Sorry, you don’t actually have a multicore CPU.\n",

"Perhaps it’s time to upgrade?\n\n", sep = ""))
}

if(missing(n.cores)){
n.cores <- available.cores

} else {
if(n.cores > available.cores){

n.cores <- available.cores
}

}
registerDoMC(cores = n.cores)

}

# Create annotated data.frame for probe sequences
probe.data <- eval(as.name(probe.pkg))

probe.data <- probe.data[, -which(names(probe.data) == "Target.Strandedness")]

# Use xy coordinates as unique probe identifiers
probe.data$id <- with(probe.data, paste(x, y, sep = ""))

# Subset by probe-sets
if(!missing(probesets)) {

probe.data <- subset(probe.data, Probe.Set.Name %in% probesets)
} else {

probesets <- mappedkeys(eval(as.name(paste(microarray, "CHR", sep = ""))))
}

# Add chr info to probe.data
chr.map <- lapply(mget(probesets,

eval(as.name(paste(microarray, "CHR", sep = "")))), function(x) x[1])
chr.map <- data.frame(Probe.Set.Name = names(chr.map), Chr = unlist(chr.map))
probe.data <- merge(probe.data, chr.map, by = "Probe.Set.Name")

# Subset probe.data to chromosome
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probe.data <- subset(probe.data, Chr == chr)
probesets <- unique(probe.data$Probe.Set.Name)

# Get sequence data for chromosome
seq <- eval(as.name(BS.organism))[[paste("chr", chr, sep = "")]]

# Identify probe matches along genomic sequence
##############################################################################

# Use match_probe_seqs function for actual sequence matching
if(parallel){

# Multicore analysis
match.results <- foreach(p = probesets) %dopar% {

cur.p <- subset(probe.data, Probe.Set.Name == p)
data.frame(probeset = p, id = cur.p$id,
match_probe_seqs(cur.p$sequence, seq, num.mm))

}
} else {

# Single core analysis
match.results <- list()
pb <- txtProgressBar(1, length(probesets), style = 3)
for(p in probesets) {

setTxtProgressBar(pb, which(probesets == p))
cur.p <- subset(probe.data, Probe.Set.Name == p)
match.results[[p]] <- data.frame(

probeset = p, id = cur.p$id,
match_probe_seqs(cur.p$sequence, seq, num.mm))

}
}
match.results <- do.call("rbind", match.results)

# Merge probe.data with matches
match.results <- merge(

match.results, probe.data[2:ncol(probe.data)], by = "id")

# Number probes based on position
match.results$probe.number <- unlist(with(match.results,

tapply(Probe.Interrogation.Position, probeset, rank)))

# Reorder results
match.results <- match.results[with(match.results,

order(probeset, probe.number)),]

match.results <- transform(match.results,
strand = as.character(strand))

if(!span.exons){
return(match.results)

}

# For unmatched probes, check for matching sequences that span exons
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##############################################################################
unmatched <- subset(match.results, probe.start == 0 | probe.end == 0)

# Count matched probes per set
match.n <- aggregate(probe.start ~ probeset, match.results,

function(x) sum(x > 0))

# Exclude probe-sets with zero matched probes
bad.sets <- as.character(subset(match.n, probe.start == 0)$probeset)
unmatched <- subset(unmatched, !probeset %in% bad.sets)

# Extract ensemblIDs from bioconductor annotation package
# (keep first id if multiple are returned)
unmatched$ensemblid <- unlist(lapply(mget(as.character(unmatched$probeset),

eval(as.name(paste(microarray, "ENSEMBL", sep = "")))), function(x) x[1]))

# Exclude probe-sets without ensemblID
unmatched <- subset(unmatched, !is.na(ensemblid))

# Use ensemblIDs to download exon coordinates from biomart
# If no data is returned wait 60s and try attempt.bm more times
a <- attempt.bm

while(a > 0){
exon.data <- get_ensembl_exons(unique(unmatched$ensemblid), organism)
if(is.data.frame(exon.data)){

a <- 0
} else {

warning(paste("\nUnable to connect to Biomart. Will make\n",
"attempt ", (attempt.bm - a) + 1, " of ", attempt.bm,
" in 60 seconds.\n", sep = ""), call. = F)

a <- a - 1
Sys.sleep(60)

}
}

if(!is.data.frame(exon.data)){
stop("No data could be retrieved from biomaRt.", call. = )

}

# Use search_spanning_exons to identify cross-exon matches
e.ids <- unique(unmatched$ensemblid)

if(parallel){
# Multicore analysis
span.results <- foreach(e = e.ids) %dopar% {

cur.e <- subset(exon.data, ensemblid == e) # current exon
cur.p <- subset(unmatched, ensemblid == e) # current probeset

matches <- with(cur.e, search_spanning_exons(
start, end, seq, cur.e$strand[1], cur.p$sequence))
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if(!is.na(matches)){
data.frame(probeset = cur.p$probeset[1], matches, id = cur.p$id)

}
}

} else {
# Single core analysis
span.results <- list()

for(e in e.ids) {
cur.e <- subset(exon.data, ensemblid == e) # current exon
cur.p <- subset(unmatched, ensemblid == e) # current probeset

matches <- with(cur.e, search_spanning_exons(
start, end, seq, cur.e$strand[1], cur.p$sequence))

if(!is.na(matches)[1]) {
span.results[[e]] <- data.frame(

probeset = cur.p$probeset[1], id = cur.p$id, matches)
}

}
}
span.results <- do.call("rbind", span.results)

# Add exon spanning matches to match.results
if(nrow(span.results) > 0) {

si <- which(match.results$id %in% span.results$id)

match.results[si, "probe.start"] <- as.character(span.results$probe.start)
match.results[si, "probe.end"] <- as.character(span.results$probe.end)
match.results[si, "mismatches"] <- as.character(span.results$mismatches)

}
return(match.results)

}



www.manaraa.com

APPENDIX A. R CODE 165

A.4.1 load_annotations

Requires only the name of microarray platform to load all necessary annotation packages.

# load_annotations
################################################################################

# Loads bioconductor annotation data for specified microarray platform.

# ARGUMENTS
# microarray: character, unique identifier of microarray platform.
# type: character, annotation data type to retrieve.
# install.missing: logical, install package if missing.

# RETURNS
# Character vector of successfully loaded packages

load_annotations <- function(microarray, type = c("cdf", "db", "probe"),
install.missing = F) {

# Check microarray against list of annotation data available from Bioconductor
source("http://www.bioconductor.org/biocLite.R", verbose = F)

anno.url <- biocinstallRepos()[grep("annotation", biocinstallRepos())]

annos <- available.packages(
paste(anno.url, "src/contrib", sep = "/"))

# Relevant packages for provided microarray
annos <- rownames(annos)[grep(microarray, rownames(annos))]

# Ensure microarray specifies a unique platform
# and specified annotation types are available
if(length(annos) > 0) {

annos.type <- sapply(type, simplify = F, function(x) annos[grep(x, annos)])
type.count <- unlist(lapply(annos.type, length))

if(sum(type.count > 1)) {
nonunique <- names(type.count)[type.count > 1]
ambig.arrays <- gsub(nonunique[1], "", annos.type[[nonunique[1]]])
stop(paste(microarray, " matches multiple platforms.\n\n",

"Please use one of the following unique identifiers:\n",
paste(ambig.arrays, collapse = "\n"), sep = ""), call. = F)

}
# Limit annos to include only those of specified data type
annos <- unlist(annos.type)

} else {
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stop(paste("No annotation data found for", microarray), call. = F)
}

# Check if identified annotation packages are installed using
# find.package, as installed.package can be quite slow
installed <- sapply(annos, function(x)

ifelse(length(find.package(x, quiet = T)), TRUE, FALSE))

# Install missing packages
if(sum(!installed)) {

if(install.missing){
biocLite(annos[!installed])

# Recheck package status
installed <- sapply(annos, function(x)

ifelse(length(find.package(x, quiet = T)), TRUE, FALSE))
} else {

writeLines(paste("\nThe following packages could not be loaded because",
" they are not installed on this system:\n",
paste(annos[!installed], collapse = "\n"), sep = ""))

}
}

# Load installed packages
if(sum(installed)){

loaded <- sapply(annos[installed], function(x)
require(x, character.only = T, quietly = T))

writeLines(paste("\nThe following packages were successfully loaded:\n",
paste(annos[installed & loaded], collapse = "\n"), sep = ""))

return(annos[installed & loaded])
} else {

stop("\nNo packages could be loaded", call. = F)
}

}
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A.4.2 match_probe_seqs

The primary pattern matching function of snp_prober. Probe sequences are matched

against the reference genome provided by BSgenome and a data frame containing the

coordinates of all matches within a Chr sequence are returned. Prior to the matching

operations, the strand from which the probe-set target is transcribed is determined by

comparing the number of successful matches on the positive-strand versus successes

on the negative strand. The num.mm argument specified in snp_prober is passed

to match_probe_seqs, and allows the user to indicate how many probe/reference

mismatches are allowable. It should be noted that every additional allowable mismatch

greatly increases the processing time required to identify matches. I generally set

num.mm to 1.

# match_probes
################################################################################

# Function requires probetable object and entire chromosome
# sequence data from BSGenome package. Probe table object is subset
# of probe.pkg for current probe-set.

# This is where the actual matching of probe sequence to genome
# sequence takes place.

match_probe_seqs <- function(seqs, ref.seq, num.mm = 0){

require(Biostrings, quietly = T)

# Convert vector of sequences into DNAStringSet
probe.set <- DNAStringSet(seqs)

# Place count and match pattern functions within lapply wrapper
count_match <- function(x, ref.seq) {

lapply(x, function(y) countPattern(y, ref.seq, max = num.mm))
}

find_match <- function(x, ref.seq) {
lapply(x, function(y) matchPattern(y, ref.seq, max = num.mm))

}
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# Look for matches across forward strand sequence
f.matches <- count_match(probe.set, ref.seq)

# If more than 2 probes have no matches, try the reverse complement
if(sum(f.matches == 0) > 2){

probe.set <- reverseComplement(probe.set)
r.matches <- count_match(probe.set, ref.seq)
# Gene is on negative strand if there are more rev matches
if(sum(f.matches == 0) > sum(r.matches == 0)){

strand <- "-"
} else {

# Stick with forward strand despite the failed matches
strand <- "+"
probe.set <- reverseComplement(probe.set)

}
} else {

strand <- "+"
}

# Perform matching
matches <- find_match(probe.set, ref.seq)

# Replace integer(0) returned for failed matches with NA’s so that
# results data.frame is of proper size
probe.start <- unlist(lapply(matches,

function(x) ifelse(length(start(x)) == 0, 0, start(x))))

probe.end <- unlist(lapply(matches,
function(x) ifelse(length(start(x)) == 0, 0, end(x))))

# Count mismatches
mismatches <- sapply(1:length(probe.set), function(x)

nmismatch(probe.set[[x]], matches[[x]]))

mismatches <- unlist(lapply(mismatches,
function(x) ifelse(length(x) == 0, NA, x)))

return(data.frame(probe.start, probe.end, mismatches, strand))
}
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A.4.3 get_ensembl_exons

Although the vast majority of probes target sequences within exons, a subset of probes

target regions harboring exon-exon junctions. Because match_probe_seqs looks for

probe sequence matches across genomic DNA, introns disrupt the alignment of exon

spanning probes. This issue is handled by downloading the exon sequences for a probe

target using get_ensembl_exons and repeating search across the assembled transcript

sequence with search_spanning_exons.

get_ensembl_exons <- function(ensemblids, organism, strand = T) {

# Load biomart
require(biomaRt, quietly = T)

# Alter organism to match biomart dataset format
organism <- tolower(gsub("(^\\w{1})\\w+\\s(\\w+)", "\\1\\2", organism))

# Connect to Ensembl BioMart database and organism-specific dataset
db <- useMart("ensembl")
mart <- useDataset(paste(organism, "gene_ensembl", sep = "_"), mart = db)

# Retrieve exon locations and sequences
exons <- getBM(attributes = c("ensembl_gene_id",

"gene_exon", "exon_chrom_start", "exon_chrom_end"),
filters="ensembl_gene_id", values = ensemblids, mart = mart)

# Return NA if no data was retrieved from biomart
if(identical(nrow(exons), 0L)){

return(NA)
}

names(exons) <- c("seq", "ensemblid", "start", "end")

# Order exons
exons <- exons[with(exons, order(ensemblid, start)),]

# Identify transcript strand
if(strand){

strand <- getBM(attributes = list("ensembl_gene_id", "strand"),
filter = "ensembl_gene_id",
values = unique(exons$ensemblid), mart = mart)

names(strand) <- c("ensemblid", "strand")
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# Add strand to exons
exons <- merge(exons, strand, by = "ensemblid")
exons <- transform(exons, strand = ifelse(strand == 1, "+", "-"))

}
return(exons)

}

A.4.4 search_spanning_exons

search_spanning_exons <- function(starts, ends, seqs, strand,
probe.seqs, num.mm = 0) {

require(Biostrings, quietly = T)

# Construct exon data.frame
exons <- data.frame(

start = starts, end = ends, seq = seqs, stringsAsFactors = F)

# Convert vector of sequences into DNAStringSet
probe.set <- DNAStringSet(probe.seqs)

# If transcribed from negative strand convert sequences to reverse complement
# so start/end positions will correctly correspond positive strand sequence
if(strand == "-"){

exons$seq <- sapply(exons$seq, USE.NAMES = F, function(x)
as.character(reverseComplement(DNAString(x))))

probe.set <- reverseComplement(probe.set)
}

# In the presence of multiple transcripts per gene, overlapping or redundant
# exons are frequently returned and must be consolidated.
# Check for exon overlap by creating a vector of all exon positions and
# looking for recurring positions
coords <- apply(exons, M = 1, function(x) x["start"]:x["end"])

# Generate non-redundant exon coordinates and sequences
if(max(table(unlist(coords))) > 1) {

exons <- with(exons, consolidate_exons2(start, end, seq))
}

# Number exons and add column for sequence length
exons <- transform(exons, number = order(start), length = nchar(seq))

# Concatenate exons sequences into a single transcript
transcript <- paste(exons$seq, collapse = "")

# Transcript data.frame where each row corresponds to a single nucleotide
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transcript.data <- data.frame(
exon = as.numeric(unlist(apply(exons, M = 1, function(x)

rep(x["number"], x["length"])))),
chr.pos = as.numeric(unlist(apply(exons, M = 1, function(x)

x["start"]:x["end"]))))

# Add within exon nucleotide positions
transcript.data$exon.pos <- unlist(with(transcript.data,

tapply(chr.pos, exon, rank)))

# Match each probe sequence to the transcript
matches <- lapply(probe.set, function(x)

matchPattern(x, DNAString(transcript), max = num.mm))

# Identify start and stop positions of each match relative to the transcript
# (Replace integer(0) returned for failed matches with NA’s so that
# results data.frame is of proper size)

match.pos <- data.frame(match = 1:length(matches),
start = unlist(lapply(matches,

function(x) ifelse(length(start(x)) == 0, NA, start(x)))),
end = unlist(lapply(matches,

function(x) ifelse(length(start(x)) == 0, NA, end(x)))))

# Return NA coordinates if no matches found
if(sum(!is.na(match.pos$start)) == 0) {

return(NA)
}

# Identify the exons spanned by the matched sequence so the nt
# positions that denote the begining and end of the match can be determined
match.pos <- transform(match.pos,

exon1 = transcript.data$exon[start], exon2 = transcript.data$exon[end],
exon1.start = transcript.data$chr.pos[start],
exon2.end = transcript.data$chr.pos[end])

# Chromosomal coordinates of matches within the first and second exons
exon1 <- paste(match.pos$exon1.start,

aggregate(chr.pos ~ exon,
subset(transcript.data, exon %in% match.pos$exon1), max)$chr.pos, sep = "-")

exon2 <- paste(aggregate(chr.pos ~ exon,
subset(transcript.data, exon %in% match.pos$exon2), min)$chr.pos,
match.pos$exon2.end, sep = "-")

exon1[grep("NA", exon1)] <- NA
exon2[grep("NA", exon2)] <- NA

# Count mismatches
mismatches <- sapply(1:length(probe.set), function(x)

nmismatch(probe.set[[x]], matches[[x]]))
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mismatches <- unlist(lapply(mismatches,
function(x) ifelse(length(x) == 0, NA, x)))

return(data.frame(probe.start = exon1, probe.end = exon2, mismatches))
}
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A.4.5 consolidate_exons

The exon sequence data obtained from Ensembl is often massively redundant due to

the existence of multiple isoforms or splice variants. consolidate_exons does what

it says and returns a single, representative transcript that encompasses all other exons.

Figure A.1 provides a visualization of a consolidated group of exons.

consolidate_exons2 <- function(starts, ends, sequences, plot = F, colors){

# Build data.frame with original exon positions
orig.exons <- data.frame(start = starts, end = ends)

# Identify chromosomal coordinates for consolidated exons
##############################################################################

# Split exons into indivdiual data.frames, where each row = 1 base
if(missing(sequences)){

pos.mat <- apply(orig.exons, 1, function(x)
data.frame(pos = x["start"]:x["end"]))

} else {
orig.exons$seq <- sequences
pos.mat <- apply(orig.exons, 1, function(x)

data.frame(pos = x["start"]:x["end"],
seq = strsplit(x["seq"], split = ""),
stringsAsFactors = F))

}

# Compile vector of unique exon positions
exon.pos <- sort(unique(unlist(lapply(pos.mat, function(x) x$pos))))

# Complete positions sequence from begining of first exon to end of last exon
all.pos <- seq(min(exon.pos), max(exon.pos))

# Denote intron positions by N
all.pos <- paste(replace(

all.pos, !all.pos %in% exon.pos, "N"), collapse = "-")

# Compress each intron to a single N
all.pos <- gsub("(-N)+", "-N", all.pos)

# Consolidated exon start positions
new.starts <- gregexpr("^\\d+|N-\\d+", all.pos)[[1]]
new.starts <- substring(all.pos, new.starts,

new.starts + attr(new.starts, "match.length"))
new.starts <- as.numeric(gsub("\\D*", "", new.starts))
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# Exon end positions
new.ends <- gregexpr("\\d+-N|\\d+$", all.pos)[[1]]
new.ends <- substring(all.pos, new.ends,

new.ends + attr(new.ends, "match.length"))
new.ends <- as.numeric(gsub("\\D*", "", new.ends))

# New exon data.frame
new.exons <- data.frame(start = new.starts, end = new.ends)

# Construct sequences for consolidated exons
##############################################################################

# Iteratively merge each exon sequence into a single, consolidated transcript
if(!missing(sequences)){

for(m in 1:length(pos.mat)){
if(m == 1){

cons.mat <- pos.mat[[m]]
} else {

cons.mat <- merge(cons.mat, pos.mat[[m]], all = T, by = c("pos", "seq"))
}

}
# Add each consolidated exon’s proper stretch of sequence
new.exons$seq <- apply(new.exons, 1, function(x) paste(with(cons.mat,

seq[pos >= x["start"] & pos <= x["end"]]), collapse = ""))
}

# Plot positions of consolidated exons against original exons
##############################################################################
if(plot){

# Calculate minor gridlines
calc_minor <- function(pos){

int <- (pos[2] - pos[1]) / 2
return(seq(min(pos) - int, max(pos) + int, int * 2))

}

if(missing(colors)){
colors <- c("yellow", "#3B4FB8")

}

# Number exons
orig.exons <- transform(orig.exons, number = order(start))

# Base plot
with(orig.exons, plot(NA, xlim = range(pretty(c(start,end))),

ylim = range(number), axes = F,
xlab = "Position (Mb)", ylab = "Exon"))

# Background
usr <- par("usr")
rect(usr[1], usr[3], usr[2], usr[4], col = "grey90", border = NA)
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# Grid
abline(v = calc_minor(axTicks(1)), h = calc_minor(axTicks(2)),

col = "grey95", lwd = .75)
abline(v = axTicks(1), h = axTicks(2), col = "white")

# Axes
axis(1, at = axTicks(1), labels = axTicks(1)*10^-6, lwd = 0, lwd.tick = 1)
axis(2, at = axTicks(2), lwd = 0, lwd.tick = 1, las = 2)

# Consolidated exons
with(new.exons,

rect(start, usr[3], end, usr[4], col = colors[2], border = NA))

# Original exons
with(orig.exons,

rect(start, number + .3, end, number - .3, col = colors[1], border = NA))

legend("bottom", bty = "n",
legend = c("Original exon", "Consolidated exon"),
col = colors, pch = 15, pt.cex = 1.5, cex = .85,
horiz = T, xpd = T, inset = 1, xjust = 1)

}
return(new.exons)

}
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Figure A.1. A typical result produced by the consolidate_exons function. Yellow
blocks represent the original exon sequences obtained from Ensembl, while purple
blocks represent the consolidate product.
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Supplemental tables

All supplemental data can be downloaded at aaronwolen.com/thesis, including the

following supplementary tables.

B.1 Table S1

Lists of genes found to be significantly ethanol responsive in PFC, NAc and VMB by the

analysis described in the Ethanol responsive genes across BXD panel section.

B.2 Table S2

Full results from functional over-representation analysis of ethanol responsive genes in

PFC, NAc and VMB, discussed in section 2.4.4.

B.3 Table S3

Lists of genes found to be significantly ethanol responsive in PFC across the LXS panel

as part of the analysis in section 2.5.

177

http://aaronwolen.com/thesis
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B.4 Table S4

List of genes that belong to the paraclique networks defined in the Saline versus ethanol

S-score paraclique networks section using saline versus ethanol S-scores, as well as

the saline and ethanol RMA data for the PFC data-set. Degree of connectivity and

betweenness centrality measures are provided for each probe-set.

B.5 Table S5

Overlap of paraclique networks constructed using S-score data and the saline/ethanol

RMA data-sets, as described in section 3.2.3.

B.6 Table S6

Peak eQTL results for all members of the saline RMA and S-score paracliques (section

3.2.3) with at least one suggestive eQTL found in the analysis discussed in section 3.3.3.

B.7 Table S7

Ranking results of positional candidate genes within each of the major ErGeN trans-

bands.

B.8 Table S8

Full results from functional over-representation analysis of S-score networks identified

in the PFC.
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B.9 Table S9

List of Affymetrix M430v2 probe-sets that overlap one or more B6D2 polymorphisms.
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